Decarbonising the Surfactant and Functional Polymer Value Chains by enzymatic processes

Lead Research Organisation: University College London
Department Name: Biochemical Engineering

Abstract

As the UK aligns with a global market place outside of the European Union, the UK needs to forge ahead through its world-leading capabilities in science, engineering and technology. Invention and innovation have been a bedrock of Britain's global presence and a key driver of productivity. Exemplifying a history of economic competitiveness, the UK has long held a significant capability in surfactant and functional polymer technology. The purpose of this proposal is to maintain and extend the UK's technical and manufacturing leadership in this sector. In 1883, Unilever pioneered Sunlight Soap; it was innovative and had a purpose: to popularise cleanliness and bring it within reach of ordinary people. Since then, Unilever now has over 400 brands and the company remains driven by purpose. The use of fossil-derived feedstocks and a linear manufacturing paradigm has exacerbated climate change, shifting the future needs of the manufacturing landscape. Remaining competitive in a global setting requires renewed investment into the multi-disciplinary expertise that defines British innovation. This PP is an exemplification of Unilever's transition away from fossil-derived chemicals in product formulations, exploring innovative ways of reducing the carbon footprint of some of the world's biggest cleaning and laundry brands. As a key component of Unilever's Clean Future vision, Unilever expects this programme to markedly contribute to reducing the carbon footprint of product formulations by up to 20%. As such, Unilever aims to contribute globally to UN Sustainable Development Goals such as Sustainable Industrialisation and Climate Action by reducing the carbon intensity of both the manufacture and product life cycle associated with cleaning and laundry products worldwide. The manufacture of surfactants and functional polymers from renewable feedstocks through the transformative power of sustainable engineering science, represents an unrivalled opportunity to decarbonise this value chain though UK technology leadership spanning the global stage.

The vision of this Prosperity Partnership (PP) is to achieve appreciable decarbonisation of the surfactant and functional polymer value chain, aligning the current linear (take-make-waste) manufacturing paradigm to greater resource circularity. In common with many materials derived from fossil reserve feedstocks, surfactants and functional polymers have multi-kilogram CO2eq emissions per kilogram of surfactant/polymer associated with manufacturing; depending on feedstock, process technology and location. Against this life cycle assessment (LCA) backdrop, the global scale of surfactant production is 1.5 - 2 million tonnes per year, necessitating action to reduce these carbon emissions globally. This proposal's far-reaching vision integrates both CO2 and process circularity into a comprehensive new paradigm for surfactant and functional polymer manufacturing, aiming to reduce global warming potential by an order of magnitude. Three work packages (WP) fill the knowledge gaps that exist within the proposed circular economy. Overarchingly, the PP aims to establish a techno-economically feasible circular economy with highly favourable life cycle assessment (LCA) outcomes, mitigating climate change through sustainable industrialisation. WP1 entails the redesign of key surfactants and functional polymers in cleaning and laundry products used worldwide. WP2 aims to enhance the techno-economic footing of rhamnolipid bio-surfactants, whilst WP3 looks towards a hybrid bio-refinery for the production of drop-in surfactants from renewable feedstocks. These UK advances in surfactant/polymer technol-ogy will have both national and global deployment capability, representing a first in class demonstration of decarbonisation through resource circularity in the bulk chemicals sector, framing and catalysing knowledge exchange towards net zero in 2050.

Technical Summary

The vision of this Prosperity Partnership (PP) is to achieve appreciable decarbonisation of the surfactant and functional polymer value chain, aligning the current linear (take-make-waste) manufacturing paradigm to greater resource circularity. In common with many materials derived from fossil reserve feedstocks, surfactants and functional polymers have multi-kilogram CO2eq emissions per kilogram of surfactant/polymer associated with manufacturing; depending on feedstock, process technology and location. Against this life cycle assessment (LCA) backdrop, the global scale of surfactant production is 1.5 - 2 million tonnes per year, necessitating action to reduce these carbon emissions globally. This proposal's far-reaching vision integrates both CO2 and process circularity into a comprehensive new paradigm for surfactant and functional polymer manufacturing, aiming to reduce global warming potential by an order of magnitude. Three work packages (WP) fill the knowledge gaps that exist within the proposed circular economy. Overarchingly, the PP aims to establish a techno-economically feasible circular economy with highly favourable life cycle assessment (LCA) outcomes, mitigating climate change through sustainable industrialisation. WP1 entails the redesign of key surfactants and functional polymers in cleaning and laundry products used worldwide. WP2 aims to enhance the techno-economic footing of rhamnolipid bio-surfactants, whilst WP3 looks towards a hybrid bio-refinery for the production of drop-in surfactants from renewable feedstocks. These UK advances in surfactant/polymer technol-ogy will have both national and global deployment capability, representing a first in class demonstration of decarbonisation through resource circularity in the bulk chemicals sector, framing and catalysing knowledge exchange towards net zero in 2050.

Publications

10 25 50