Electrically heated catalytic reforming reactors - eQATOR

Lead Participant: JOHNSON MATTHEY PLC

Abstract

Process electrification and use of renewable resources for the production of chemicals can have a huge impact on climate change. Biogas is a particularly attractive renewable carbon source for decentralized production of chemicals due to its huge current production capacity and opportunities for growth. In parallel, methanol is an important base chemical with a huge and growing market size, produced mainly from fossil resources today. In this context, eQATOR aims to demonstrate in an industrially relevant environment (TRL6) scalable, electrically heated catalytic reactor technologies that will allow conversion of biogas into syngas with improved efficiency compared to the state-of-art, bridging biogas production with downstream conversion technology into higher-added value products such as methanol, fuels and hydrogen. The central innovation in eQATOR is the integrated development of catalysts and reactors, and two different, yet complementary, electric heating technologies, resistive and microwave heating, leading to disruptive electrically heated reactor technologies for syngas production. eQATOR will help transform syngas production from large-volume reactors with fired burners to renewable heated and compact reactors (up to 90% size reduction of total reactor unit and 50-75% reduction in catalyst volume), providing significant benefits from process intensification. Implementation of eQATOR technology will decrease life-cycle CO2 emissions for syngas production by 60-80% and save from 7 Mt CO2/year in 2030, up to around 45 Mt CO2/year in 2045. The experimental development is supported by a broad integrated sustainability assessment including techno-economic feasibility, environmental footprint and impact on society and rural development. The eQATOR consortium provides complementary world class expertise along the entire value chain and strong industrial commitment to maximize wide exploitation of the results through industrial implementation.

Lead Participant

Project Cost

Grant Offer

JOHNSON MATTHEY PLC £376,684 £ 263,679

Publications

10 25 50