Next Generation Low Activation Hard Facing Alloys

Lead Research Organisation: Imperial College London
Department Name: Materials

Abstract

Hardfacing alloys have been used for many years in components where surface degradation is of concern, particularly when coupled with extreme environments; be it high wear, high temperature, corrosive or erosive environments or a combination of these. Of particular interest is the use of hardfacings in valve seatings within the PWR environment. This is a high temperature, highly corrosive environment in which wear is of critical concern. The wear mechanism of most concern is galling which can result in catastrophic surface degradation and valve seizure. Galling is characterised by plastic deformation of surfaces resulting in the formation of protrusions on the contact surfaces. Although this much is known, the exact mechanisms by which it may occur are little known, as are the factors affecting it.

Although further research into the mechanisms of galling are necessary, some alloys are known to have greater galling resistance than others. One such alloy is Stellite 6, a cobalt-based alloy containing carbides. From a mechanical point of view, Stellite 6 is a very good candidate for valve seatings, however, in the PWR environment, cobalt activates, meaning that Stellite 6 should not be used. Thus the scope of this project is to understand the mechanisms of galling, including those in Stellite 6 which result in its galling resistance, and to produce a galling resistant alloy suitable for the PWR environment.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/N509486/1 01/10/2016 31/03/2022
2270131 Studentship EP/N509486/1 01/10/2017 30/09/2021 Samuel Rogers