Electron spin resonance and nuclear magnetic resonance spectroscopy of organic semiconductors

Lead Research Organisation: University of Cambridge
Department Name: Physics

Abstract

The aim of the proposed project is to develop a fundamental understanding of the mechanisms for electron and nuclear spin relaxation in organic semiconductors in the solid state as well as to develop methods for characterising the coupling between electron and nuclear spins in these materials. Mechanisms for electron spin relaxation are currently not well understood, in particular the relative importance of hyperfine and spin-orbit interaction induced relaxation mechanisms as well as the nature of the relevant dynamic processes which generate the time-varying magnetic fields that can induce spin-flips. Phenomena like the Overhauser effect or DNP remain largely unexplored in these materials. In the project you will develop a DNP method for characterizing organic semiconductors and their conformation and local microstructure in thin films samples, as well as explore novel physical phenomena in these materials based on controlling electron - nuclear spin interactions that could potentially be exploited in applications such as energy storage, spintronics or quantum information processing. The project is mainly an experimental project based on combining electron spin resonance (ESR) and nuclear magnetic resonance (NMR) spectroscopy measurements available in the Cavendish Laboratory and the Department of Chemistry as well as dynamic nuclear polarisation (DNP) measurements; the project will also involve modeling of the experimental spectra.

Planned Impact

Our main impacts will be:
- a new generation of interdisciplinary nano researchers with expertise across science and innovation, fluent in the combination of approaches and technologies
- strategic developments in the study and control of nano-interfaces connecting complex architectures, for advances in emerging scientific grand challenges across vital areas of energy, health and ICT
- integration of new functional nanotechnologies together by harnessing nano-interfaces within larger application systems, and their translation into innovative products and services through our industry partners and student-led spin-outs
- a paradigm change of collaborative outlook in this science and technology
- a strong interaction with stakeholders including outreach and public engagement with cutting edge nano research
- improved use of interdisciplinary working tools including management, discipline bridging and IT

Economic impact of the new CDT is focused through our industrial engagement programme, as well as our innovation training. Our partner companies include - NPL, Hitachi, Oxford Nanopore, TWI, ARM, Eight19, Mursla, Britvic, Nokia Bell Labs, IBM, Merck, Oxford Instruments, Aixtron, Cambridge Display Technologies, Fluidic Analytics, Emberion, Schlumberger, Applied Materials and others. Such partnerships are crucial for the UK to revive high value manufacturing as the key pillar to lead for future technologies. We evidence this via the large number of CDT projects resulting in patents, with their exploitation supported by Cambridge Enterprise and our Industry Partners, and direct economic impact has also resulted from the large proportion of our students/alumni joining industry (a key outcome), or founding startups including: Echion Technologies (battery materials), Inkling Cambridge (Graphene inks and composites), HexagonFab (2D materials), Simprints (low-cost biometrics), Cortirio (rapid diagnosis of brain injury).

Training impact emerges through not just the vast array of Nano techniques and ideas that our cohorts and associated students are exposed to, but also the interdisciplinary experience that accrues to all the academics. In particular the younger researchers coming into the University are plugged into a thriving programme that connects their work to many other sciences, applications, and societal challenges. Interactions with external partners, including companies, are also strong and our intern programme will greatly strengthen training outcomes.

Academic impact is fostered by ensuring strong coherent plans for research in the early years, and also the strong focus of the whole CDT on study and control of nano-interfaces connecting complex architectures. Our track record for CDT student-led publications is already strong, including 4 Nature/Science, 6 Nature Chem/Nano/Mat, 13 Nat. Comm., with student publications receiving >6000 citations in total, including 16 papers with >100 citations each and high altmetric scores. Students have also given talks and posters at international conferences and won numerous awards/fellowships for research excellence.

Societal impacts arise from both the progression of our cohorts into their careers as well as their interaction with the media, public, and sponsors. We directly encourage a wide variety of engagement, including interaction with >5000 members of the public each year (mostly pre-university) through Nano exhibits during public events such as the Cambridge Science Festival and Royal Society Summer Science Exhibition, and also art-science collaborations to reach new audiences. We also run public policy and global challenges workshops, and will further develop this aspect with external partners. Our efforts to bring societal challenges to students' awareness frames their view of what a successful career looks like. Longer term societal impact comes directly from our engagement with partner companies creating jobs and know-how in the UK.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022953/1 01/10/2019 31/03/2028
2276498 Studentship EP/S022953/1 01/10/2019 31/12/2023 Tarig Mustafa