Particle engineering approaches to control the interaction of medicinal aerosols with the lung environment following inhalation

Lead Research Organisation: University of Hertfordshire
Department Name: School of Life and Medical Sciences

Abstract

Abstract: Aerosol therapeutics are widely used in the treatment of respiratory and systemic disease. As such, significant research has gone into how the active pharmaceutical ingredient and delivery device affect particle deposition and patient outcomes. However, there remains limited research on the dependency of water vapour interactions, in the respiratory system, on specific, physicochemical aerosol properties. Consequently, their influence on hygroscopic growth, dissolution and agglomeration within the lung environment is often overlooked. This project focuses on the delivery of solid drug particles by dry powder inhalers and reviews some of the particle properties that may underpin aerosol dynamics in the humidity of the respiratory system. Furthermore, in response, a novel way to produce monodisperse model particles with distinct characteristics and properties using microfluidic crystallisation techniques is presented. The subsequent investigation of the model particles will allow for the determination of the extent of impact that micromeritic properties, such as size, surface area and crystallinity, have on the interaction of solid drug particles with moisture in the human lung. In doing so, it will enhance the understanding of the fundamental, underlying principles of aerosol dynamics in the respiratory system and contribute to the potential for optimisation of aerosol drug delivery techniques.

Planned Impact

Aerosol science has a significant impact on a broad range of disciplines, extending from inhaled drug delivery, to combustion science and its health impacts, aerosol assisted routes to materials, climate change, and the delivery of agricultural and consumer products. Estimates of the global aerosol market size suggest it will reach $84 billion/year by 2024 with products in the personal care, household, automotive, food, paints and medical sectors. Air pollution leads to an estimated 30-40,000 premature deaths each year in the UK, and aerosols transmit human and animal infections. More than 12 million people in the UK live with lung disease such as asthma, and the NHS spends ~£5 billion/year on respiratory therapies. Many of the technological, societal and health challenges central to these areas rely on core skills and knowledge of aerosol science. Despite this, an Industrial Workshop and online survey (held in preparation for this bid) highlighted the current doctoral skills gap in aerosol science in the UK. Participating industries reported that only 15% of their employees working with aerosol science at doctoral-level having received any formal training. A CDT in aerosol science, CAS, will fill this skills gap, impacting on all areas of science where core training in aerosol science is crucial.

Impact on the UK aerosol community: Aerosol scientists work across governmental policy, industrial research and innovation, and in academia. Despite the considerable overlap in training needs for researchers working in these diverse sectors, current doctoral training in aerosol science is fragmentary and ad hoc (e.g. the annual Fundamentals of Aerosol Science course delivered by the Aerosol Society). In addition, training occurs within the context of individual disciplines, reinforcing artificial subject boundaries. CAS will bring coherence to training in the core physical and engineering science of aerosols, catalysing new synergies in research, and providing a focal point for training a multidisciplinary community of researchers. Working with the Aerosol Society, we will establish a legacy by providing training resources for future researchers through an online training portal.

Impact on industry and public-sector partners: 45 organisations have indicated they will act as CAS partners with interests in respiratory therapies, public health, materials manufacturing, consumer and agricultural products, instrumentation, emissions and environment. Establishing CAS will deliver researchers with the necessary skills to ensure the UK establishes and sustains a scientific and technical lead in their sectors. Further, it will provide an ideal mechanism for delivering Continuing Professional Development for the existing workforce practitioners. The activity of CAS is aligned to the Industrial Strategy Challenge Fund (e.g. through developing new healthcare technologies and new materials) and the EPSRC Prosperity Outcomes of a productive, healthy (e.g. novel treatments for respiratory disease) and resilient (e.g. adaptations to climate change, air quality) nation, with both the skilled researchers and their science naturally translating to long-lasting impact. Additionally, rigorous training in responsible innovation and ethical standards will lead to aerosol researchers able to contribute to developing: regulatory standards for medicines; policy on air quality and climate geoengineering; and regulations on manufactured nano-materials.

Public engagement: CAS will provide a focal point for engaging the public on topics in aerosol science that affect our daily lives (consumer products, materials) through to our health (inhalation therapeutics, disease transmission and impacts of pollution) and the future of our planet (geoengineering). Supported by a rigorous doctoral level training in aerosol science, this next generation of researchers will be ideally positioned to lead debates on all of these societal and technological challenges.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023593/1 01/04/2019 30/09/2027
2277525 Studentship EP/S023593/1 01/10/2019 30/09/2023 Victoria Legh-Land
 
Description Development of an enhanced pulmonary particle deposition model that accounts for droplet interactions with water vapour in the respiratory system. The results from simulations using this have suggested the need for further research into the use of spacers for drug delivery via pressurised metered dose inhalers (pMDIs).
Exploitation Route Improved simulation for the deposition of medicinal particles in the regional and total respiratory system.
Sectors Healthcare,Pharmaceuticals and Medical Biotechnology

 
Description Research collaboration with the BARC group at the University of Bristol 
Organisation University of Bristol
Department School of Chemistry
Country United Kingdom 
Sector Academic/University 
PI Contribution Development of a python script of the International Commission of Radiological Protection (ICRP) aerosol deposition model with an integrated hygroscopic growth treatment and subsequent simulations and analysis using the model.
Collaborator Contribution Academic support in the development of the model and research into the evaporation profiles of pMDI, glycerol solution droplets upon generation into different relative humidities using novel experimental setups.
Impact Paper published: 10.3390/pharmaceutics13070941 Poster presentation at the EAC2021.
Start Year 2021
 
Description co-funded partnership with Chiesi Farmaceutici S.p.A 
Organisation Chiesi
Department Chiesi Limited
Country United Kingdom 
Sector Private 
PI Contribution Investigation into the influence that the physicochemical particle properties of drug aerosols effect their interaction with water vapour in the respiratory system.
Collaborator Contribution Part funding of studentship, industrial partnership supervision and site-based equipment training.
Impact Research underway
Start Year 2019