Intermolecular Charge Transport: A Novel Design Paradigm

Lead Research Organisation: Newcastle University
Department Name: Sch of Natural & Environmental Sciences

Abstract

Renewable energy is expected to play a major role in reaching our target to end the UK's contribution to global warming by the year 2050.1 Emerging thin-film technologies, such as perovskite solar cells (PSC), are widening the scope of photovoltaics (PVs) to applications beyond the effective capabilities of conventional silicon based PVs. These devices are able to operate under low light conditions and can be printed easily as cheap lightweight-flexible devices, making them suitable for integration within indoor and portable systems.2

PSCs with high efficiencies of 25.2%, and 28% within silicon-based tandem cells, have been already demonstrated.3 They make use of abundant, low-cost starting materials and are less energy intensive to produce than conventional silicon solar cells.4 However, a key challenge remains the 'hole' transport material (HTM) which plays a major role in controlling the overall performance and cost of these devices.4 Light hitting the perovskite absorber causes excites its electrons to a higher energy level, leaving behind a positively charged 'hole'. The HTM then shuttles these holes away from the absorber and toward the electrode allowing a current to flow through the device. One problem is charge recombination, which limits efficiency. In addition, state-of-the-art HTMs, such as spiro-OMeTAD, are expensive and difficult to synthesise.4

Novel HTMs, have been developed at a fraction of the cost of conventional materials, employing simple chemistry.4,5,6 Their synthesis can be carried out under ambient conditions,without the need for metal catalysis, and trivial isolation techniques furnish products in high yields and purities. By combining different core and side groups, HTM libraries can be created, tuning structures to optimise their performance. However, these novel materials still do not outperform state-of-the-art HTMs.

This project aims to investigate intermolecular charge transport affected by the HTM. By combining theoretical and experimental approaches, we are looking to understand the improved charge transport properties of novel materials, synthesised using condensation chemistry, with disrupted conjugation in the backbone.4 Theoretical studies will be carried out to investigate the properties of known HTMs, including conductivity and charge carrier mobility. Based on our findings we aim to design and synthesise improved materials which will be tested, both as 'hole'-only devices and within PSCs.

Computational studies of known HTMs will be conducted, studying the neutral and charged species as well as transitions from the ground state to the excited state. These results will be used to gain an insight into properties, such as charge carrier mobility, packing and solubility, that effect performance. Our findings will guide the design of novel HTMs with improved charge transport properties. Molecules will be synthesised that expand on our range of molecules, synthesised using condensation chemistry, initially with disrupted conjugation in the backbone.

Performance-related optoelectronic and physical properties of the molecules, will be tested both in 'hole'-only devises and within PSCs. Molecular properties will be calculated from UV-visible absorption spectra and cyclic voltammetry experiments. The conductivity and charge-carrier mobilities of HTMs will be measured. Finally, thermal transitions, stability and profile of HTM films will be analysed. HTMs with the appropriate properties will be used to fabricate PSCs and the structure and PV characteristics of these devices will be studied. Using an iterative approach, our results will be used to optimise the design process and arrive at better performing HTMs.

Planned Impact

ReNU's enhanced doctoral training programme delivered by three uniquely co-located major UK universities, Northumbria (UNN), Durham (DU) and Newcastle (NU), addresses clear skills needs in small-to-medium scale renewable energy (RE) and sustainable distributed energy (DE). It was co-designed by a range of companies and is supported by a balanced portfolio of 27 industrial partners (e.g. Airbus, Siemens and Shell) of which 12 are small or medium size enterprises (SMEs) (e.g. Enocell, Equiwatt and Power Roll). A further 9 partners include Government, not-for-profit and key network organisations. Together these provide a powerful, direct and integrated pathway to a range of impacts that span whole energy systems.

Industrial partners will interact with ReNU in three main ways: (1) through the Strategic Advisory Board; (2) by providing external input to individual doctoral candidate's projects; and (3) by setting Industrial Challenge Mini-Projects. These interactions will directly benefit companies by enabling them to focus ReNU's training programme on particular needs, allowing transfer of best practice in training and state-of-the-art techniques, solution approaches to R&D challenges and generation of intellectual property. Access to ReNU for new industrial partners that may wish to benefit from ReNU is enabled by the involvement of key networks and organisations such as the North East Automotive Alliance, the Engineering Employer Federation, and Knowledge Transfer Network (Energy).

In addition to industrial partners, ReNU includes Government organisations and not for-profit-organisations. These partners provide pathways to create impact via policy and public engagement. Similarly, significant academic impact will be achieved through collaborations with project partners in Singapore, Canada and China. This impact will result in research excellence disseminated through prestigious academic journals and international conferences to the benefit of the global community working on advanced energy materials.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023836/1 01/04/2019 30/09/2027
2282813 Studentship EP/S023836/1 01/10/2019 30/09/2023 Miriam Fsadni
 
Description Modelling the effect of disorder on mobility in organic semiconductors
Synthesis of novel hole transport materials
Investigated intra- and intermolecular properties of know and novel hole transport materials
Exploitation Route Inform design of new materials
Sectors Chemicals,Electronics,Energy

 
Description ICSM 2022 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Poster presentation at the 2022 International Conference on the Science and Technology of Synthetic Metals (ICSM) in Glasgow, in which I discussed my research with postgraduate and postdoctoral researchers from different institutions.
Year(s) Of Engagement Activity 2022
URL https://icsm2022.com/about-icsm/
 
Description IPEROP23 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Poster presentation at the Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics (IPEROP23) in Kobe, Japan, where I discussed my research with postgraduate and postdoctoral researchers from different institutions.
Year(s) Of Engagement Activity 2023
URL https://www.nanoge.org/IPEROP23/home
 
Description Took part in the RSC 2022 Summer Science Exhibition 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact Had the opportunity to join Dr Marina Freitag's group in an outreach event where over 1500 members of the public, including school children were introduced to 3rd generation DSSCs by making berry cells: https://www.berrycells.com/
Year(s) Of Engagement Activity 2022
URL https://www.berrycells.com/