A novel 3D Osteochondral Scaffold with Mechano-identical properties of the native tissue for in situ tissue regeneration

Lead Research Organisation: University of Sheffield
Department Name: Medicine and Biomedical Science

Abstract

OA is a chronic global disease affecting over 8.5 million people in the UK, causing loss of the articular cartilage surface and changes in the underlying bone. This causes painful, stiff joints and progressive loss of joint mobility leading to functional impairment which can affect daily living and work activities causing a profound loss of quality of life.

Knee and hip joints have the major share of the OA burden loss of joint function. Treatments for OA give valuable pain relief and symptom control but there is no cure.

The progressive disabling nature of OA produces a substantial socio-economic burden of 1-2% GDP. Replacement of the joint with an artificial one may be necessary to restore joint movement, particularly in the knee and hip with 150,000 primary joint replacement operations per annum. While successful, replacement joints have a limited working life and may loosen requiring further corrective surgery. There is an unmet clinical need for an effective and economic regenerative therapy to treat OA and restore function to the joint.

Many patients would benefit if there was a more effective repair of lesions in the joint surface and underlying bone caused by trauma (a risk factor for OA) or early osteoarthritis. We propose an 'off-the shelf', multifunctional, osteochondral scaffold with physical and mechanical properties to match the biomechanical environment of native osteochondral tissue and designed to promote articular cartilage regeneration by actively recruiting , binding and promoting chondrogenesis of stem cells released surgically during scaffold implantation.

Planned Impact

There are numerous beneficiaries of this Advanced Biomedical Materials CDT. Firstly and of short term impact are the PhD students themselves. They will receive extensive research specific and professional/transferable skills training throughout the 4 years of the programme. They will have access to state of the art facilties and world leading academics, industry and clinicians. The training and potential placements are designed to maximise the impact of their research in terms of dissemination and movement of their research along the translation pathway.

Longer term benefits are that this distinct cohort will become the future UK Biomedical Materials leaders and be able to use their bespoke training and network within the cohort to collaborate on future worldwide funding opportunities and drive UK research in this area.

UK and international academics will benefit as they will gain the next generation of highly skilled postdoctoral researchers with knowledge and expertise not only in their specific research area but of industry, regulatory and clinical aspects.

UK and international industry will benefit - in the short term they will gain academic based research to further develop products and in the longer term have a pool of highly skilled graduates.

Clinicians will benefit from collaborative research and also the development of new and novel products to enhance the treatment of a variety of trauma and disease based needs from biomaterials.

The public will benefit as end users as patients that will have their quality of life improved from the products developed in the CDT and will be educated in novel technologies and materials to repair the human body. The UK economy will benefit from the reduced healthcare costs associated with the new and improved medical products developed in this CDT and subsequently from the trained graduates. The UK economy will also benefit from the increased revenue from medical sales products from the UK industrial partners we will be working with.

The impact of this CDT will be realised by direct academic, clinical and industrial engagement with the students allowing efficient and state of the at training and fast translation of developing products. Students will also be trained in knowledge exchange and will use these skills to disseminate their research to, and liaise with, the key stakeholders - the academic, industrial, clinical and public sectors. We will ensure widening participation routes are addressed in this CDT in order to include equality and diversity not only in our initial CDT student cohort but in future researcher generations to come.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022201/1 01/04/2019 30/09/2027
2431802 Studentship EP/S022201/1 01/10/2020 19/12/2024 Rebecca Hanson