Biomechanical regulation of cell extrusion and migration during metastasis

Lead Research Organisation: Imperial College London
Department Name: Chemistry

Abstract

Most adult tumours are comprised of tightly bound epithelial cells organised into continuous sheets. The extrusion of cancer cells from these sheets is an important initial step in metastasis. It was previous believed that tumour cell extrusion is driven by epithelialmesenchymal transition (EMT) whereby cancer cells lose epithelial phenotypes and adhesions to neighbouring cells. However, recent evidence has suggested a more complex behaviour, where different cancer subtypes perform varying degrees of EMT and in certain cases, EMT may not be required at all. Furthermore, tumour cells often disseminate via collective migration where group of cells migrate together with intact adhesions among neighbours. Cell collectives can then enter the bloodstream as circulating tumour cell clusters, which are "the most likely harbingers of metastases" due to their 50-100X greater metastatic potential than equal numbers of individual circulating cells.
We currently do not fully understand how cell-cell and cell-ECM adhesions, intrinsic forces (cortical tension) or extrinsic biomechanical forces (extracellular environment) contribute to the a) extrusion of cells from epithelial sheets and b) individual vs. collective migration. Our lack of physiologically-relevant models capable of isolating these variables severely hampers our ability to study their contributions and interactions during tumour cell dissemination. In this work, we aim to use novel microfabricated devices to explore how cell-cell contacts, cell-cell interfacial tension and "squeeze" forces applied by neighbouring tissues drive tumour cell extrusion and detachment.
Confinement of doublets into geometric shapes (2D micropatterned substrates) has a dramatic influence on intercellular boundaries, cortical tension and cell motility. Depending on the tensional level, cells displayed undulated, weak junctions and migrate faster (circular shapes) or strong junctions and less motility (triangular shapes), resembling healthy epithelial tissues. This indicates an essential role of cell cortex stiffness and intracellular mechanics to influence the ability to stick together or to migrate faster, and that these can be controlled via geometric confinement.
We hypothesize that (i) the lower cortical tension seen in tumour cells increases tumour cell dissemination by weakening cohesion among neighbours and (ii) biomechanical forces and the balance between cell-cell & cell-ECM adhesions control the detachment and dissemination of cancer cells as individual vs. clusters from benign tumours.
As a model of carcinoma development, we will use a panel of cells: primary keratinocytes, immortalized keratinocytes, and two sets of primary tumour and metastatic head and neck carcinoma cells from patients (available in the Braga lab; keratinocyte-derived tumours). We will design novel platforms to provide high controllability of mechanical stress. We aim to: Design next generation 3D-microwell arrays and microchannels to evaluate the influence of cell geometry and external mechanical forces on adhesive properties and migration; Define the response of cells at various stages of transformation to variations in intrinsic cortical tension and external mechanical forces; Compare the oncogenic signalling in the various geometric challenges (3D cellular microwell) and cell detachment/motility as cohorts (microchannels).
Outcomes: This project will accelerate our understanding of the factors that drive tumour cell extrusion and motility, enabling us to devise novel anti-metastatic strategies to inhibit tumour cell invasion. The project will generate comprehensive knowledge of mechanical force regulation of metastasis, how different states of tumour progression respond to tensional challenges, molecular regulators and screening platforms to interfere with the process.

Planned Impact

Addressing UK skills demand: The most important impact of the CDT will be to train a new generation of Chemical Biology PhD graduates (~80) to be future leaders of enterprise, molecular technology innovation and translation for academia and industry. They will be able to embrace the life science's industrialisation thereby filling a vital skills gap in UK industry. These students will be able to bridge the divide between academia/industry and development/application across the physical/mathematical sciences and life sciences, as well as the human-machine interfaces. The technology programme of the CDT will empower our students as serial inventors, not reliant on commercial solutions.
CDT Network-Communication & Engagement: The CDT will shape the landscape by bringing together >160 research groups with leading players from industry, government, tech accelerators, SMEs and CDT affiliates. The CDT is pioneering new collaboration models, from co-located prototyping warehouses through to hackathons-these will redefine industry-academic collaborations and drive technology transfer.
UK plc: The technologies generated by the CDT will produce IP with potential for direct commercial exploitation and will also provide valuable information for healthcare and industry. They will redefine the state of the art with respect to the ability to make, measure, model and manipulate molecular interactions in biological systems across multiple length scales. Coupled with industry 4.0 approaches this will reduce the massive, spiralling cost of product development pipelines. These advances will help establish the molecular engineering rules underlying challenging scientific problems in the life sciences that are currently intractable. The technology advances and the corresponding insight in biology generated will be exploitable in industrial and medical applications, resulting in enhanced capabilities for end-users in biological research, biomarker discovery, diagnostics and drug discovery.
These advances will make a significant contribution to innovation in UK industry, with a 5-10 year timeframe for commercial realisation. e.g. These tools will facilitate the identification of illness in its early stages, minimising permanent damage (10 yrs) and reducing associated healthcare costs. In the context of drug discovery, the ability to fuse the power of AI with molecular technologies that provide insight into the molecular mechanisms of disease, target and biomarker validation and testing for side effects of candidates will radically transform productivity (5-10 yrs). Developments in automation and rapid prototyping will reduce the barrier to entry for new start-ups and turn biology into an information technology driven by data, computation and high-throughput robotics. Technologies such as integrated single cell analysis and label free molecular tracking will be exploitable for clinical diagnostics and drug discovery on shorter time scales (ca.3-5 yrs).
Entrepreneurship & Exploitation: Embedded within the CDT, the DISRUPT tech-accelerator programme will drive and support the creation of a new wave of student-led spin-out vehicles based on student-owned IP.
Wider Community: The outreach, responsible research and communication skill-set of our graduates will strengthen end-user engagement outside their PhD research fields and with the general public. Many technologies developed in the CDT will address societal challenges, and thus will generate significant public interest. Through new initiatives such as the Makerspace the CDT will spearhead new citizen science approaches where the public engage directly in CDT led research by taking part in e.g hackathons. Students will also engage with a wide spectrum of stakeholders, including policy makers, regulatory bodies and end-users. e.g. the Molecular Quarter will ensure the CDT can promote new regulatory frameworks that will promote quick customer and patient access to CDT led breakthroughs.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023518/1 01/10/2019 31/03/2028
2451224 Studentship EP/S023518/1 03/10/2020 30/09/2024 Rachel HEALY