Bluetongue virus transmission between ruminant host and Culicoides vectors: the importance of insect saliva proteins
Lead Research Organisation:
The Pirbright Institute
Department Name: Vector Borne Diseases
Abstract
Bluetongue virus (BTV) is an arthropod-borne virus (an Arbovirus) transmitted between its ruminant hosts by blood feeding 'biting' midges (Culicoides spp.). The virus can infect most ruminants but causes haemorrhagic fever and severe clinical disease, in sheep (especially European breeds), some species of deer and to a lesser extent in cattle. Until a decade ago bluetongue was a disease of warm climates, areas containing populations of transmission-competent insect vector species. However, since 1998 BTV has moved progressively further north into Europe, a process related to warming of the local climate and an expanding distribution of certain midge vector populations. In 2006, a bluetongue outbreak occurred much further north than ever before, affecting Belgium, the Netherlands, Germany, Luxembourg, and North East France. The virus causes serve clinical disease in sheep and even cattle and approximately 50% of sheep and 10% of cattle developing clinical signs die. This outbreak confirms that some northern European midge species (which are the same as in the UK) can transmit BTV, and demonstrates that the whole of Europe, including the UK, is now under threat of further outbreaks. However, not all species of midge can transmit BTV efficiently, suggesting that transmission of the virus and the distribution of the disease is influenced by the insect vectors and the strain of virus involved. Blood feeding insects deposit saliva into the skin of the host. This causes inflammation and hypersensitivity in the skin, which results in the familiar red spots and itching, or even allergic vesicles, after midge or mosquito bites. BTV is transmitted in the insect's saliva and must survive the inflammation response in order to infect the ruminant host. However, the saliva also contains proteases (to help prevent clotting) which can modify the virus, even increasing its infectivity for the insect vector. It is often assumed that Arboviruses are injected into the blood of the host by feeding insects. However, midges use their mouthparts to cut and damage skin tissues, so they can feed on a mixed pool of blood, tissue and lymphatic fluid. BTV is not injected into blood vessels but left in the saliva deposited into the skin. The virus can replicate in certain skin cells and additionally in cells of the hosts inflammatory response that are attracted to the biting site. Therefore BTV may be present at higher levels in the skin than in the bloodstream, which may be important for uptake by feeding midges. So it appears that the virus has evolved to make use of the saliva proteins and the host's response, to increase the efficiency of transmission, and its chances of survival. We have recently developed methods to isolate midge saliva proteins in large quantities, to investigate their role in BTV transmission between vector insects and ruminant hosts. Initial studies indicate that different midge species have different saliva proteins, which may help explain differences in their vector 'competence'. There are unique facilities at Pirbright to work on midges, sheep and the bluetongue virus itself, that will allow us to explore their relationships and influence on transmission mechanisms. The project will compare saliva from different European, African and American midges, to determine the role of saliva proteins in BTV infection in mammalian and insect tissue culture cells, or in the sheep. The project will elucidate the importance of locally generated virus in the skin for BTV transmission and will also determine if the virus can be transmitted mechanically between infected and non-infected sheep (by other insects or by needle), or directly from one midge to another while they feed on the same sheep. The results of this research will improve our understanding of BTV transmission in Europe, helping to define the risk of bluetongue transmission and to implement appropriate control measures.
Technical Summary
Bluetongue virus (BTV) can infect most ruminants but causes severe disease, in sheep, some species of deer and to a lesser extent in cattle. The virus is maintained in the field by transmission cycles between ruminant hosts and insect vectors - blood feeding midges (Culicoides spp.). Adults of most Culicoides have the potential to become infected with BTV. However their ability to transmit virus varies dramatically between species and only a small proportion of insects become infected (even from a known vector species). Any factors that can enhance infection of the insect, would also increase BTV transmission efficiency, and may influence vector status. In contrast, BTV transmission from vector to host is very efficient, requiring only a single insect bite to cause a severe clinical infection, while a much larger amount of virus is normally used to cause similar effects by needle inoculation. Culicoides saliva proteins cause a severe inflammatory response, and profound changes in the sheep skin, including formation of vesicles, synthesis (or release) of inflammatory modulators and massive recruitment of leukocytes. These changes may play an important part in the BTV infection mechanism in the sheep. Indeed cellular components of the ovine immune system can themselves become infected by BTV and may be involved in initial stages of infection and dissemination. Novel methods will be used to collect saliva proteins of Culicoides vector (and non-vector) species. Major protein components will be identified by AA sequencing. The effect of these proteins (particularly proteases) on virus structure and infectivity for different cells will be determined. The effect of saliva proteins and the inflammatory response, on virus titre and persistence in the sheep skin will be explored. The possibility of mechanical BTV transmission between host animals (by other insects, or by needle), or non-systemic transmission between co-feeding vector insects, will also be examined.
Organisations
- The Pirbright Institute (Lead Research Organisation)
- Complutense University of Madrid (Collaboration)
- UNIVERSITY OF NOTTINGHAM (Collaboration)
- Kafkas University (Collaboration)
- International Livestock Research Institute (ILRI) (Collaboration)
- Friedrich Loeffler Institute (Collaboration)
- Pasteur Institute, Tunis (Collaboration)
- Hassan II Agronomic and Veterinary Institute (Collaboration)
- Hebrew University of Jerusalem (Collaboration)
- French Agricultural Research Centre for International Development (Collaboration)
- Senegalese Institute of Agricultural Research (Collaboration)
- University Libre Bruxelles (Université Libre de Bruxelles ULB) (Collaboration)
- National Institute for Agricultural and Food Research and Technology (Collaboration)
- UNIVERSITY OF GLASGOW (Collaboration)
- Veterinary School of Alfort (Collaboration)
- National Veterinary Institute (Collaboration)
- THE PIRBRIGHT INSTITUTE (Collaboration)
- Wageningen University & Research (Collaboration)
- Institute of Experimental Zooprophylactic ' Abruzzo and Molise "G. Caporale" (Collaboration)
Publications
Attoui H
(2021)
Encyclopedia of Virology
Conte A
(2016)
OIEBTLABNET: the web-based network of the OIE Bluetongue Reference Laboratories.
in Veterinaria italiana
Darpel KE
(2012)
Involvement of the skin during bluetongue virus infection and replication in the ruminant host.
in Veterinary research
Darpel KE
(2016)
Using shared needles for subcutaneous inoculation can transmit bluetongue virus mechanically between ruminant hosts.
in Scientific reports
Darpel KE
(2009)
Transplacental transmission of bluetongue virus 8 in cattle, UK.
in Emerging infectious diseases
Darpel KE
(2011)
Saliva proteins of vector Culicoides modify structure and infectivity of bluetongue virus particles.
in PloS one
Hemati B
(2009)
Bluetongue virus targets conventional dendritic cells in skin lymph.
in Journal of virology
Maclachlan N
(2009)
The Pathology and Pathogenesis of Bluetongue
in Journal of Comparative Pathology
Moulin V
(2012)
Clinical disease in sheep caused by bluetongue virus serotype 8, and prevention by an inactivated vaccine.
in Vaccine
Description | Culicoides biting midge saliva can directly cleave the outer coat protein VP2 of bluetongue virus (BTV) and thereby directly modify the virus particle. This treatment increases the infectivity of BTV particles 10 fold for insect-vector cells, enhancing transmission to vector insects. Furthermore the saliva of some midge species is more efficient than others, suggesting that the constitution of Culicoides saliva proteins might be involved in vector competence. Collaborative work during this grant showed that skin dendritic cells are involved in the initial dissemination of BTV in the host. Transmission studies demonstrated that if needles are re-used for subcutaneous inoculations, Bluetongue virus (BTV) can be mechanically transmitted in sheep and cattle, although these less invasive techniques are normally considered low risk. Mechanical transmission of BTV did not occur after allowing non-vector biting insects (stable fly Stomoxis calcitrans) to partially blood-feed on an infected sheep, followed by immediately completing the blood-feeding on naïve recipient sheep. BTV can be orally transmitted to ruminants with infection efficiency depending on the cell culture system used to generate the virus. BTV generated in mammalian cell culture was much more efficient in infecting cattle and sheep via the oral route compared to the same virus strain propagated in insect cell cultures. However, the virus generated in insect cell cultures is highly infectious and virulent when inoculated subcutaneously into susceptible ruminates, suggesting that BTVs might differ in their ability to infect specific cell targets, depending on the cell culture system used to generate the virus. |
Exploitation Route | The research carried out under this funding has led to new research areas at The Pirbright Institute further investigating the influence of arthropod saliva on arbovirus transmission, infectivity and virulence. The specific effect of Culicoides saliva proteins on bluetongue virus infectivity and transmission has generated considerable interest and other international research teams have carried out in vivo infection studies of ruminants in the context of insect vector transmission. Additionally the methodology of Culiocides saliva protein collection has also been utilised by other international research teams and further proteins in C. sonorensis saliva have been identified. |
Sectors | Agriculture Food and Drink |
Description | The work and results of this study have direct implications for the methods of vaccine delivery to reduce the spread of bluetongue virus, as a result of vaccination campaigns. These results have been communicated to DEFRA. |
First Year Of Impact | 2012 |
Sector | Agriculture, Food and Drink |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Complutense University of Madrid |
Country | Spain |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | French Agricultural Research Centre for International Development |
Country | France |
Sector | Private |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Friedrich Loeffler Institute |
Country | Germany |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Hassan II Agronomic and Veterinary Institute |
Country | Morocco |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Institute of Experimental Zooprophylactic ' Abruzzo and Molise "G. Caporale" |
Country | Italy |
Sector | Private |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | International Livestock Research Institute (ILRI) |
Country | Kenya |
Sector | Charity/Non Profit |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Kafkas University |
Country | Turkey |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Kimron Veterinary Institute |
Country | Israel |
Sector | Charity/Non Profit |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | National Institute for Agricultural and Food Research and Technology |
Country | Spain |
Sector | Public |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | National Veterinary Institute |
Country | Sweden |
Sector | Public |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Pasteur Institute, Tunis |
Country | Tunisia |
Sector | Public |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Senegalese Institute of Agricultural Research |
Country | Senegal |
Sector | Public |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | The Pirbright Institute |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | University Libre Bruxelles (Université Libre de Bruxelles ULB) |
Country | Belgium |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | University of Glasgow |
Department | MRC - University of Glasgow Centre for Virus Research |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | University of Nottingham |
Department | School of Veterinary Medicine and Science Nottingham |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Veterinary School of Alfort |
Country | France |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Wageningen University & Research |
Department | Plant Research International |
Country | Netherlands |
Sector | Charity/Non Profit |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | Microbiology Society Annual conferences- invited speaker |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Other audiences |
Results and Impact | Scientific talk on successful cross-species transmission of vector-borne viruses |
Year(s) Of Engagement Activity | 2019 |