High-field NMR Spectroscopy for Biomolecular Research
Lead Research Organisation:
University of Bristol
Department Name: Chemistry
Abstract
NMR spectroscopy is the most information-rich analytical technique available to molecular research, but requires a high level of instrumentation to maximise the benefits of such analyses. In particular, its' application to materials of biological interest requires high quality instrumentation, with powerful superconducting magnets for signal resolution (500MHz or greater) and maximum sensitivity for proton nuclei. The Bristol NMR Facility currently supports a substantial number of researchers in the Biomolecular field and current NMR hardware is no longer sufficient to fulfil the demands of the cutting edge research projects conducted - which covers areas such as biosynthesis, protein structure and dynamics, potential disease treatments (Alzheimers and Cystic Fybrosis), bionanotechnology and membrane protein-ligand interactions. To this end, a modern 500MHz automated NMR spectrometer is required enabling these research fields to take advantage of the latest hardware and experimental developments required to achieve their aims.
Technical Summary
Biomolecular research at Bristol has a high demand for high resolution, high-sensitivity 1H-based NMR spectroscopy which cannot be fulfilled with current hardware. Over 60 biomolecular researchers require routine access to >400MHz spectroscopy in a range of projects spanning biosynthesis, protein structure and dynamics, bionanotechnology, membrane protein-ligand interactions, pharmaceutical development and ion transport in cell membranes. A 1H-sensitive, triple resonance 500MHz automated spectrometer will allow these research workers routine access to modern experimental methods (HSQC, field-gradient NOE, etc) at sufficiently high resolution for their needs. The rapid access to molecular structure elucidation, dynamics measurements and binding studies will allow more efficient and effective research programmes to be progressed and new projects to be developed at Bristol.
Publications
Hazelden IR
(2018)
Pyrrolidines and Piperidines by Ligand-Enabled Aza-Heck Cyclizations and Cascades of N-(Pentafluorobenzoyloxy)carbamates.
in Angewandte Chemie (International ed. in English)
Harper MJ
(2018)
Oxidative Addition, Transmetalation, and Reductive Elimination at a 2,2'-Bipyridyl-Ligated Gold Center.
in Journal of the American Chemical Society
Grélaud S
(2018)
Branch-Selective and Enantioselective Iridium-Catalyzed Alkene Hydroarylation via Anilide-Directed C-H Oxidative Addition.
in Journal of the American Chemical Society
Ganesh V
(2018)
Chiral Aniline Synthesis via Stereospecific C(sp3)-C(sp2) Coupling of Boronic Esters with Aryl Hydrazines.
in Organic letters
Fawcett A
(2019)
Carbopalladation of C-C s-bonds enabled by strained boronate complexes.
in Nature chemistry
Fawcett A
(2019)
Strain-Release-Driven Homologation of Boronic Esters: Application to the Modular Synthesis of Azetidines.
in Journal of the American Chemical Society
Farndon JJ
(2018)
Stereospecific Alkene Aziridination Using a Bifunctional Amino-Reagent: An Aza-Prilezhaev Reaction.
in Journal of the American Chemical Society
Dias CM
(2018)
Anthracene Bisureas as Powerful and Accessible Anion Carriers.
in Chemistry (Weinheim an der Bergstrasse, Germany)
De Mattos-Shipley KMJ
(2018)
The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis.
in Chemical science
Dalling AG
(2018)
Synthesis of Nitrogen Heterocycles via Directed Carbonylative C-C Bond Activation of Cyclopropanes.
in Chimia
Dalling AG
(2019)
Carbonylative C-C Bond Activation of Electron-Poor Cyclopropanes: Rhodium-Catalyzed (3+1+2) Cycloadditions of Cyclopropylamides.
in Angewandte Chemie (International ed. in English)
Costil R
(2018)
a-Methyl phenylglycines by asymmetric a-arylation of alanine and their effect on the conformational preference of helical Aib foldamers.
in Organic & biomolecular chemistry
Cooper P
(2018)
Iridium-Catalyzed a-Selective Arylation of Styrenes by Dual C-H Functionalization
in Angewandte Chemie International Edition
Carter TS
(2016)
Platform Synthetic Lectins for Divalent Carbohydrate Recognition in Water.
in Angewandte Chemie (International ed. in English)
Butts CP
(2011)
High precision NOEs as a probe for low level conformers--a second conformation of strychnine.
in Chemical communications (Cambridge, England)
Burns M
(2014)
Assembly-line synthesis of organic molecules with tailored shapes.
in Nature
Bame J
(2018)
Improved NOE fitting for flexible molecules based on molecular mechanics data - a case study with S -adenosylmethionine
in Physical Chemistry Chemical Physics
Armstrong RJ
(2018)
Enantiodivergent Synthesis of Allenes by Point-to-Axial Chirality Transfer.
in Angewandte Chemie (International ed. in English)
Amer MM
(2018)
Substituted Dihydroisoquinolinones by Iodide-Promoted Cyclocarbonylation of Aromatic a-Amino Acids.
in Organic letters
Alder RW
(2017)
Perhydrohelicenes and other diamond-lattice based hydrocarbons: the choreography of inversion.
in Chemical science
Adam C
(2018)
The Role of Terminal Functionality in the Membrane and Antibacterial Activity of Peptaibol-Mimetic Aib Foldamers
in Chemistry - A European Journal
Ackrill TD
(2015)
Synthesis of Diarylheptanoid Scaffolds Inspired by Calyxins I and J.
in Organic letters
Abrams R
(2018)
Transition Metal Free Cycloamination of Prenyl Carbamates and Ureas Promoted by Aryldiazonium Salts.
in Angewandte Chemie (International ed. in English)