Investigating the function of a ClpC/Hsp100-type chaperone in chloroplast preprotein import

Lead Research Organisation: University of Oxford
Department Name: Plant Sciences

Abstract

Chloroplasts and mitochondria are normal components of many cells - they are sub-cellular structures called organelles. Interestingly, these two organelles evolved from bacteria that were engulfed by other cells more than a billion years ago, and in many ways they still resemble free-living bacteria. Chloroplasts are found in plant cells, contain the green pigment chlorophyll, and are exclusively responsible for the reactions of photosynthesis (the process that captures sunlight energy and uses it to power the activities of the cell). Since photosynthesis is the only significant mechanism of energy-input into the living world, chloroplasts are of inestimable importance, not just to plants but to all life on Earth. Chloroplasts are also important in many other ways, since they play essential roles in the biosynthesis of oils, proteins and starch.
Although chloroplasts do contain DNA (which is a relic from their ancient, evolutionary past as free-living photosynthetic bacteria), and are therefore able to make some of their own proteins, over 90% of the 3000 or so proteins required to build a fully functional chloroplast are encoded on DNA within the cell nucleus. The majority of chloroplast proteins are therefore made outside of the chloroplast, in the cellular matrix known as the cytosol. Since chloroplasts are each surrounded by a double membrane, or envelope, that is impervious to the passive movement of proteins, this presents a significant problem. To overcome the problem, chloroplasts have evolved a sophisticated protein import apparatus, which uses energy (in the form of ATP) to drive the import of proteins from the cytosol, across the envelope, and into the chloroplast interior. This protein import apparatus comprises two molecular machines: one in the outer envelope membrane called TOC (an abbreviation of "Translocon at the outer envelope membrane of chloroplasts"), and another in the inner envelope membrane called TIC.
This project is focused on the TIC machine, and in particular on a protein called Hsp93 which is associated with the TIC complex. This Hsp93 protein is an ATPase (i.e. it hydrolyses ATP to release energy), and is a member of a family of proteins called the "molecular chaperones". Such chaperone proteins are able to bind to other proteins, particularly when they are in an unfolded state. In doing this, some chaperones can exert a "pulling force" on the target protein, to facilitate its passage from one location to another. Based on several lines of evidence, Hsp93 is thought to provide the driving force for chloroplast protein import, and to act by pulling on those proteins that need to be imported (i.e. it is believed to be a core part of the so-called "chloroplast protein import motor"). Thus, much of the ATP consumption that occurs during the import mechanism is tentatively attributed to Hsp93. However, direct proof of these hypotheses is still lacking. We propose to test these ideas directly, by manipulating the activities of the Hsp93 protein in intact plants, and assessing the consequences of such manipulations on chloroplast protein import efficiency.
Because chloroplasts carry out essential functions, and because protein import is essential for chloroplast development, it should come as no surprise to learn that plants without a functional chloroplast protein import machinery are unable to survive (in fact, they die at the embryo stage). Thus, chloroplast protein import is an essential process for plants. Similarly, since we are all ultimately dependent upon plant products for survival, it follows that chloroplast protein import is essential on a global scale. What is more, since chloroplasts play a major role in the synthesis of many economically important products (such as oils and starch), a more complete understanding of how these organelles develop may enable us to enhance the productivity of crop plants, or otherwise manipulate their products.

Technical Summary

Hsp93 is a chloroplast ClpC/Hsp100-type chaperone that partitions between the envelope and the stroma, and it is thought to have two different roles: 1) at the envelope TIC complex it is thought to drive chloroplast protein import; 2) with stromal ClpP it is thought to target proteins for degradation. We will study the first of these roles as it is not yet supported by conclusive evidence.
Studying Arabidopsis hsp93 knockouts supported a role for Hsp93 in import, but could not causally isolate the mutant's import defects from proteolytic defects. To separate these functions, we mutated critical residues in Hsp93 that affect just one of the protein's roles, and then tested for complementation of hsp93 knockout plants. In collaboration with A. Clarke (Gothenburg; who is interested in proteolysis), we will study these transgenics in detail to gauge the relative importance of Hsp93's two roles.
Chloroplast protein import consumes stromal ATP, but this usage has not yet been assigned to a particular component. To test the importance of Hsp93 ATPase activity for import, we will interfere with the protein's ability to bind or hydrolyse nucleotides, and then assess the consequences in relation to protein import in plants.
Unpublished data imply that Hsp93 is recruited to the envelope by a well-known TIC protein. We will study this critical Hsp93-TIC interaction in detail, in vitro and in vivo. Use of deletion series will map the interaction, while its regulation will be assessed by applying different nucleotides, clients or partners. We will also elucidate complex size and stoichiometry.
Hsp93 forms a hexameric ring in the stroma, but its oligomeric state at the envelope is unknown. If envelope Hsp93 is hexameric, it likely acts by threading preproteins through the ring's axial channel; if it is not, another mechanism must operate. To address this issue, and to identify possible Hsp93 interactors at the envelope, we will characterize envelope-bound Hsp93 complexes.

Planned Impact

Academic impact will be substantial due to the work's interdisciplinarity as detailed in the Academic Beneficiaries section. This will manifest itself in several ways: 1) The project will contribute significantly to scientific advancement providing new knowledge with relevance in several overlapping fields and disciplines. 2) The project will stimulate international collaboration, mainly through the outlined formal collaboration with A. Clarke at Gothenburg University, but also due to the involvement of Dr Flores-Perez as RA who maintains strong scientific links with Barcelona University where she obtained her PhD. 3) The project will contribute significantly to the health of UK plant science due to publicity surrounding the project, the interactions it will enable, and by our hosting of visitors from schools as this will generate enthusiasm for plant biology. 4) The project will deliver highly-trained individuals who will also contribute to the health of UK plant science. Training will result not only from the direct involvement of the research staff but also from Prof Jarvis' supervision of PhDs and MSc project students (enrolled on the University's Molecular Genetics or Bioinformatics courses), who will work on projects closely related to the proposed work and have daily interaction with the research staff.

In the longer term, industry, agriculture and society generally also stand to benefit from the work, due to the fundamental importance of the area in which the project is focused. Chloroplasts are the site of photosynthesis in plants and so are responsible for much of the world's primary productivity. Plastids synthesize a diversity of products (e.g. starch, amino acids, fatty acids) and many of these are vital in mammalian diets. Knowledge on plastid biogenesis resulting from the project may enable improvements in the quantity or quality of these products, or in the productivity of crops generally. Plastids offer many opportunities for agricultural or industrial exploitation. Depletion of fossil fuels and environmental effects of their use demand that renewable materials are used by the chemical and fuel industries. Biofuels have attracted much attention and will likely become more significant as cost and efficiency issues are resolved. As raw materials for biofuel production are derived largely via chloroplast processes, better understanding of plastid biogenesis will aid development of this technology.
As chloroplasts can contain >50% of leaf protein, foreign proteins can be expressed to very high levels in plastids. Manipulating the TIC machinery was shown to induce massive proliferation of the inner envelope membrane, without affecting plant growth. This may provide an environment for accumulation of foreign membrane proteins, which are difficult to express in bacteria, and are commercially important (e.g. 50% of drugs target membrane proteins). But the success of such methods will depend on proper protein targeting, of which we presently have only superficial understanding. Our work on Hsp93 will significantly advance our knowledge in this area, thereby facilitating the use of chloroplasts as bioreactors.

The general public and schools will benefit as we will engage with them in various ways. We will develop a schools engagement activity on Chloroplast Biology as part of a two-day event entitled Dynamic DNA organized by GENIE, a Centre for Excellence in Teaching and Learning at the University. Through the University's Botanic Garden (which receives 40k visitors annually) we will contribute to a publicly-circulated newsletter, deliver a public lecture on project-related topics, prepare a display board for placement at the gardens, and contribute to well-attended educational activities for local schools. Finally, we will continue to accept visitors into our lab via different schemes (e.g. sixth-formers funded by the Nuffield Foundation) and engage the media via the University Press Office.
 
Description We studied the role of the chloroplast chaperone protein, Hsp93, in relation to the import of proteins into chloroplasts in plants, and discovered that it is dependent on the ability of the chaperone to interact with the proteolytic subunit ClpP. This strongly suggests that there is a quality-control mechanism at the point of protein import into chloroplasts, and that Hsp93 is an important mediator of this mechanism.
Exploitation Route We and others may investigate the quality-control mechanism at the point of import in which Hsp93 operates.
Sectors Agriculture, Food and Drink,Energy

 
Description The outputs of this project hold considerable promise in relation to the manipulation and optimization of plastid protein biogenesis in crops, but it is yet too early to determine whether such potential will translate into real-world applications.
First Year Of Impact 2016
Sector Agriculture, Food and Drink,Energy
Impact Types Societal

 
Title Vectors and resulting transgenic plants (Arabidopsis) that express tagged and untagged forms of Hsp93 with/without the PBM mutation, in different genetic backgrounds 
Description Vectors and resulting transgenic plants (Arabidopsis) that express tagged and untagged forms of Hsp93 with/without the PBM mutation, in different genetic backgrounds 
Type Of Material Biological samples 
Year Produced 2012 
Provided To Others? Yes  
Impact Furtherance of our BBSRC-funded research 
 
Title Vectors for testing ClpC/Hsp93 interactions by bimolecular fluorescence complementation (BiFC) 
Description Vectors for testing ClpC/Hsp93 interactions by bimolecular fluorescence complementation (BiFC) 
Type Of Material Technology assay or reagent 
Provided To Others? No  
Impact Furtherance of our BBSRC-funded research 
 
Description Prof Herman Overkleeft, Leiden University, Netherlands 
Organisation Leiden University
Country Netherlands 
Sector Academic/University 
PI Contribution Provision of isolated chloroplasts for the proteomic discovery of new interaction partners of a protein of interest in pull-down experiments.
Collaborator Contribution Our partners in Leiden are conducting the pull-downs and proteomic analyses.
Impact The collaboration is on-going and so there are no outputs to report yet. It is interdisciplinary, as it exploits chemical methodologies to study the biology of an organelle protein.
Start Year 2015
 
Description Professor Adrian Clarke, Gothenburg University, Sweden 
Organisation University of Gothenburg
Country Sweden 
Sector Academic/University 
PI Contribution We are leaders of this collaboration on the role of the ClpC/Hsp93 molecular chaperone in chloroplast protein import
Collaborator Contribution Provision of expertise and assistance with aspects of the project related to proteolytic activity of the chaperone
Impact A paper (see below) has been published that is focused on the role of the ClpC/Hsp93 molecular chaperone in chloroplast protein import. The results indicate that the activity of ClpC/Hsp93 in protein import is dependent on its ability to interact with the proteolytic subunit ClpP. We interpret this to indicate that a protein quality-control mechanism operates at the point of import, in which ClpC/Hsp93 plays a key role. Flores-Pérez Ú, Bédard J, Tanabe N, Lymperopoulos P, Clarke AK, Jarvis P (2016) Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope. Plant Physiol. 170(1): 147-62.
Start Year 2011
 
Description FEBS Workshop, Plant Organellar Signaling - From Algae to Higher Plants, 2011, Primošten, Croatia 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? Yes
Geographic Reach International
Primary Audience Other audiences
Results and Impact Participant; poster presentation International networking; inspiration for research; esteem

no actual impacts realised to date
Year(s) Of Engagement Activity 2011
 
Description Gordon Research Conference on Mitochondria and Chloroplasts, Barga, Italy (July 6-11, 2014) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? Yes
Type Of Presentation keynote/invited speaker
Geographic Reach International
Primary Audience Other audiences
Results and Impact Presentation delivered at conference.

Promoted awareness and outcomes of my BBSRC-funded work, and made contact with researchers in related fields leading possible future collaboration.
Year(s) Of Engagement Activity 2014
URL http://www.grc.org/programs.aspx?year=2014&program=mitochon
 
Description Grenoble Alliance for Integrated Structural Cell Biology (GRAL) Workshop, Autrans, France (April 7-8, 2014) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? Yes
Type Of Presentation keynote/invited speaker
Geographic Reach International
Primary Audience Other audiences
Results and Impact Keynote presentation delivered at scientific workshop.

Promoted awareness and outcomes of my BBSRC-funded work, and made contact with researchers in related fields leading possible future collaboration.
Year(s) Of Engagement Activity 2014
URL http://www.labex-gral.fr/events
 
Description Hosting of A-level student for work experience placement (Tom Bacon, Oakham School) 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact The student, Tom Bacon from Oakham School, participated in scientific research during a one week placement, working alongside other researchers in the laboratory.

The student developed better understanding of scientific research and biology during the course of his placement, and this will be likely to positively inform his future career choices.
Year(s) Of Engagement Activity 2012
 
Description Hosting undergraduate for intern research project (Estefani Lencer, Mannheim University of Applied Science) 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? Yes
Geographic Reach International
Primary Audience Undergraduate students
Results and Impact The student, Estefani Lencer of Mannheim University of Applied Science, participated in scientific research for two months, working alongside Dr Ursula Flores-Perez in the laboratory.

The student developed better understanding of scientific research and biology during the course of her placement, and this will be likely to positively inform her future career choices.
Year(s) Of Engagement Activity 2014
 
Description International Symposium on the Regulation of Photosynthetic Function, Guilin, China (August 16-20, 2014) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? Yes
Type Of Presentation keynote/invited speaker
Geographic Reach International
Primary Audience Other audiences
Results and Impact Presentation delivered at congress.

Promoted awareness and outcomes of my BBSRC-funded work, and made contact with researchers in related fields leading possible future collaboration.
Year(s) Of Engagement Activity 2014
URL http://rpf2014.csp.escience.cn/dct/page/1
 
Description Invited speaker at GRC Protein Transport Across Cell Membranes Meeting entitled "Protein Transport Across Cell Membranes: Mechanism, Structure, and Regulation" (Texas, USA, 2016) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact I was an invited speaker at this prestigious international meeting, which took place during 6-11 March 2016, at Hotel Galvez, Galveston, TX, USA.
Year(s) Of Engagement Activity 2016
URL https://www.grc.org/protein-transport-across-cell-membranes-conference/2016/
 
Description Keynote Speaker at Society of Experimental Biology (SEB) Annual Meeting (Gothenburg, Sweden, 2017) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact I was a keynote speaker at this prestigious international meeting, which took place during 3-6 July 2017, at Gothenburg, Sweden.
Year(s) Of Engagement Activity 2017
URL http://www.sebiology.org/events/event/seb-gothenburg
 
Description Plant Biology Europe FESPB/EPSO Congress, Dublin, Ireland (June 22-26, 2014) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? Yes
Type Of Presentation keynote/invited speaker
Geographic Reach International
Primary Audience Other audiences
Results and Impact Presentation as keynote speaker delivered at congress.

Promoted awareness and outcomes of my BBSRC-funded work, and made contact with researchers in related fields leading possible future collaboration.
Year(s) Of Engagement Activity 2014
URL http://europlantbiology.org/
 
Description Plenary Speaker and Session Chair at the 27th International Conference on Arabidopsis Research (ICAR) (Gyeong Ju, Korea, 2016) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact I was a plenary speaker and session at the is prestigious international meeting, which took place during 29 June-3 July 2016, at Gyeong Ju, South Korea.
Year(s) Of Engagement Activity 2016
URL http://www.arabidopsisresearch.org/images/ICAR/ICAR2016_programofICAR2016_160418.pdf
 
Description Talk given to A-level students as part of Study Day at Oxford's Museum of Natural History 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact This talk was part of an engagement event (a Study Day) organized by Oxford's Museum of Natural History and Botanic Garden. It was a special day for A-level biologists and it focused on cells; my contribution was a presentation covering the evolution of the plant cell with a particular focus on chloroplast evolution. Approximately 300 students attended from a mixture of local schools. All students were between 16 and 18 years old and had chosen to study biology.
Year(s) Of Engagement Activity 2014
URL http://www.oum.ox.ac.uk/educate/index.htm