Biofortifying Brassica with calcium (Ca) and magnesium (Mg) for human health

Lead Research Organisation: Rothamsted Research
Department Name: Unlisted


Many UK adults consume insufficient calcium (Ca) or magnesium (Mg) for adequate health. Dietary Ca and Mg intakes could be increased through crop biofortification. We recently identified for the first time, wide natural genetic variation, substantial heritability, and individual loci affecting leaf Ca and Mg concentration (leaf-Ca and Mg) in plants. We have an immediate and timely opportunity to resolve these loci and to understand their regulation for use in biofortification strategies using vegetable Brassica. The aim of this project is to characterise genes and gene networks regulating leaf-Ca and Mg using: (1) genomic sequence, new microarrays and mapping populations of Brassica for comparative and genetical genomics (eQTL); (2) novel TILLING (Targeting Induced Local Lesions IN Genomes) mutants of Brassica to test gene function in planta, using novel eQTL-targets and locus-specific paralogues of Type IA CAX cation transporters known to affect leaf Ca homeostasis in Arabidopsis. All data will curated in the public domain (via to enable marker-assisted selection for use in pre-breeding pipelines. We will use novel and existing gene targets to define regulatory gene networks controlling leaf-Ca and Mg using database integration (Ondex) and modelling techniques (Petri Net) under development in our laboratories. We will define genes, alleles, and their regulatory network architecture in the context of increasing industry-use of calcium nitrate (Ca(NO3)2) fertiliser. Ca(NO3)2 can improve Brassica crop quality, reduce greenhouse gas emissions, and improve the security of fertiliser storage.


10 25 50