Modelling the path to better soil-applied pesticides

Lead Research Organisation: Rothamsted Research
Department Name: Unlisted

Abstract

Many pesticides are soil applied, including residual herbicides, soil insecticides and seed treatments incorporating fungicides and/or insecticides. They are under intense regulatory pressure with regard to water contamination, and continue to be lost from the market as a result. Simulation models are the primary basis for regulating pesticides against EU ground- and surface-water protection standards. Since these models are one-dimensional, they cannot explicitly represent plants or their roots, or the effects of formulations and formulation placement strategies. Other models exist that represent individual components of the system is a more satisfactory way. This project will create a conceptual framework for representing local pesticide concentrations in the whole soil-plant system, and will use it to produce a spatially-competent simulation model, that integrates existing knowledge. Advanced formulations and placement strategies offer the prospect of reduced off-target movement. The new model will for the first time enable their environmental benefit to be quantified in a cost-effective way. This offers the prospect of being able to gain credit in the regulatory approval process for these technologies, offsetting the negative economic effects of evolving regulation. In combination with existing empirical approaches, the new model will also deliver quantitative understanding of pesticide efficacy in the soil-plant system, enabling the rational design of new active ingredients and formulations. In short, the project will enable efficacy and environmental protection to be optimised for soil-applied pesticidal products, aiding product invention and supporting regulatory approval.

Publications

10 25 50