Molecular studies of Bluetongue and related viruses
Lead Research Organisation:
The Pirbright Institute
Department Name: UNLISTED
Abstract
A reference collection of ‘well documented’ orbivirus isolates, including BTV, EHDV and AHSV from around the world, has been established at IAH (see : http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/orbiviruses.htm), as a basis for molecular epidemiology studies. The collection and associated sequence database include novel virus isolates and historical isolates from other laboratories. Sequence data generated (by this and associated projects) are used to help identify the origins and movements of individual orbivirus strain/lineages. They also represent an important resource for the design, evaluation and maintenance of existing and novel diagnostic assay systems, and vaccine development at IAH and elsewhere. Sequencing studies of individual orbivirus genome segments (by this and associated projects) provides information concerning the biological properties (structure/function), relationships, and continuing evolution of these viruses, particularly within European ecosystems. Purification and expression of virus particles and individual proteins of BTV, related orbiviruses and other arboviruses provides a basis for crystallisation trials, X-ray crystallography and structural determination. Antibodies raised against viruses, and individual viral proteins, will provide reagents for replication studies, assay and vaccine development (by this and associated projects). The project will also work towards developing reverse genetics systems for the orbiviruses and other multi-segmented dsRNA arboviruses, providing unique opportunities to explore relationships between gene sequence and biological properties of individual proteins and viruses.
Organisations
- The Pirbright Institute, United Kingdom (Lead Research Organisation)
- Kimron Veterinary Institute (Collaboration)
- Complutense University of Madrid, Spain (Collaboration)
- University Libre Bruxelles (Université Libre de Bruxelles ULB) (Collaboration)
- University of Glasgow, United Kingdom (Collaboration)
- Kafkas University (Collaboration)
- National Veterinary Institute (Collaboration)
- Veterinary School of Alfort (Collaboration)
- The Pirbright Institute, WOKING (Collaboration)
- Agricultural Research for Development (CIRAD) (Collaboration)
- International Livestock Research Institute (ILRI) (Collaboration)
- Friedrich Loeffler Institute (Collaboration)
- University of Nottingham (Collaboration)
People |
ORCID iD |
Peter Paul Mertens (Principal Investigator) |
Publications

Cantaloube JF
(2010)
Analysis of hepatitis C virus strains circulating in Republic of the Congo.
in Journal of medical virology

Prasad G
(2009)
Bluetongue

Hemati B
(2009)
Bluetongue virus targets conventional dendritic cells in skin lymph.
in Journal of virology

Moulin V
(2012)
Clinical disease in sheep caused by bluetongue virus serotype 8, and prevention by an inactivated vaccine.
in Vaccine

Maan S
(2012)
Complete genome sequence analysis of a reference strain of bluetongue virus serotype 16.
in Journal of virology

Goodwin AE
(2010)
Detection and prevalence of the nonsyncytial American grass carp reovirus Aquareovirus G by quantitative reverse transcriptase polymerase chain reaction.
in Journal of aquatic animal health

Hemadri D
(2017)
Dual Infection with Bluetongue Virus Serotypes and First-Time Isolation of Serotype 5 in India.
in Transboundary and emerging diseases

De Clercq K
(2009)
Emergence of bluetongue serotypes in Europe, part 2: the occurrence of a BTV-11 strain in Belgium.
in Transboundary and emerging diseases

Temizel EM
(2009)
Epizootic hemorrhagic disease in cattle, Western Turkey.
in Emerging infectious diseases
Description | One of the key achievements of this grant was the maintenance and expansion of a reference collection of orbivirus isolates at TPI. This collection (which is accessible via the internet) provides a basis for molecular epidemiology studies of bluetongue viruses around the world, including the emergence and movement of novel strains in Europe. These studies have led to the development of novel diagnostic assay systems for the identification and typing of BTV and relate orbiviruses These studies included full genome sequencing of the first BTV strain (BTV type 8) to invade northern Europe (in 2006) and the UK (in 2007). This project provided the |
Exploitation Route | The Orbivirus Reference Collection (ORC) and associated sequence database represent a vital resource for molecular epidemiology studies of bluetongue and related orbiviruses. By establishing a complete dataset for the serotype specific outer-capsid protein of the 24 known BTV serotypes, it has been possible for us (and others) to identify further novel BTV serotypes. On this basis a further 5 BTV serotypes have been discovered (current total 29 BTV serotypes). The ORC has provided virus isolates for the development and testing of vaccines used against BTV-8 in Europe. It also provides unique identification numbers for well define virus isolates that be used as a point of reference to link data generated by different groups and researchers, adding value to the available information. These virus isolates have also provided materials for follow on studies of the molecular epidemiology of BTV outbreaks in Europe and in other parts of the world (see BBS/E/I/00001720). Diagnostic assay systems that were developed based on these studies have been used to detect and identify novel BTV outbrteak strains in Europe , and have been shared with colleagues in Australia, India, the USA, Brazil and many countries in Europe. Real time RT-PCR diagnostic kits for the typing of BTV outbreak strains, were made available as a kit produced by LSI (now Thermo-Fischer) under licence. The initial work completed in this project on the establishment of reverese genetics systems, showed some initial promise and laid a foundation for the later and very successful reverse genetics grant (BB1017259/1) |
Sectors | Agriculture, Food and Drink |
URL | http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/virus-nos-by-country.htm |
Description | Virus was supplied from the Orbivirus reference collection for the development and testing of vaccines used to combat the BTV-8 incursion into northern Europe and the UK. Advice was provided to Defra, the EU and Veterinary Medicines Directorate concerning the surveillance, identification and control, through vaccination of BTV outbreaks in Europe. |
First Year Of Impact | 2009 |
Sector | Agriculture, Food and Drink |
Impact Types | Economic,Policy & public services |
Description | "Understanding pathogen, livestock, environment interactions involving bluetongue virus" (PALE-Blu) |
Amount | € 6,300,000 (EUR) |
Funding ID | 727393-2 |
Organisation | European Commission |
Sector | Public |
Country | European Union (EU) |
Start | 06/2016 |
End | 11/2020 |
Title | BTVGlue |
Description | BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. |
Type Of Material | Database/Collection of data |
Year Produced | 2017 |
Provided To Others? | Yes |
Impact | The BTV Glue database is now available to assist in the rapid identification of novel bluetongue isolates based on genome sequence data |
URL | https://www.researchgate.net/project/BTV-GLUE-an-online-database-to-support-surveillance-and-control... |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Agricultural Research for Development (CIRAD) |
Country | France |
Sector | Public |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Complutense University of Madrid |
Country | Spain |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Friedrich Loeffler Institute |
Country | Germany |
Sector | Public |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | International Livestock Research Institute (ILRI) |
Country | Kenya |
Sector | Charity/Non Profit |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Kafkas University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Kimron Veterinary Institute |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | National Veterinary Institute |
Country | Sweden |
Sector | Public |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | The Pirbright Institute |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | University Libre Bruxelles (Université Libre de Bruxelles ULB) |
Country | Belgium |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | University of Glasgow |
Department | MRC - University of Glasgow Centre for Virus Research |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | University of Nottingham |
Department | School of Veterinary Medicine and Science Nottingham |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |
Description | PALE-Blu H20:20 grant "Understanding pathogen, livestock, environment interactions involving bluetongue virus" |
Organisation | Veterinary School of Alfort |
PI Contribution | Peter Mertens is coordinator of the PALE-Blu H20:20 consortium. My group is also directly involved in most of the work packages that are included in the grant. |
Collaborator Contribution | Bluetongue is an economically important disease that since 1998 has invaded Europe, particularly southern and central countries. These changes are thought to be linked to climate change and appear unlikely to be reversed. The disease causes caused economic losses due to fatalities in livestock (>25% in sheep), loss of reproductive performance and milk/meat production, and restrictions in animal movements and trade. The PALE-Blu Project brings together 19 different Partner organisations in fifteen countries to generate data concerning the distribution and interaction of genetic variants of the bluetongue virus with insect vector and host populations to inform control and prevention strategies The project will analyse interactions between different virus strains, insect vectors and vertebrate hosts at the population, individual and molecular levels., Transmission mechanisms will be analysed to inform the ways in which risks can be evaluated, modelled and mitigated. In particular the project will identify and map different virus and vector populations and the environmental factors that determine their incidence and distribution to understand how genetic variations can determine transmission of different BTV serotype / strains in different regions. Databases will be created to help in the global identification of different BTV variants based on sequence analyses. The project will develop diagnostic assays to maintain and improve current diagnostic and surveillance capabilities. These will specifically include the recently identified 'novel' serotypes (BTV-25 upwards) to ensure that they can also be rapidly and sensitively detected. The project will seek to generate additional cell lines for European and Africa Culicoides species for further studies of transmission mechanisms and differences between different vector populations / species. Cross reactive antigens and epitopes will be identified for different BTV serotypes to develop safe multivalent or cross-reactive vaccines against different BTV serotypes The project will develop and maintain communication and project management through websites periodic meetings and publications / presentations to both scientific and lay audiences. BTV sequences have been collected, annotated and curated and introduced into the BTV-GLUE website. The beta version of the BTV-GLUE dataset is available via a public web server (http://btv.glue.cvr.ac.uk). We are currently inserting an automated genotyping tool for all segments. A comprehensive database of Culicoides vector abundance, covering most of Europe and neighbouring countries, has been generated to define epizones with different insect vector populations. Livestock maps (cattle, sheep, and goats) updated to reflect 2010 have helped define epizones based on ecoclimatic data. Diagnostic tools for the novel BTV serotypes, as well as multiplexed assay systems are being developed and evaluated Primary cell lines for additional Culicoides species, have been developed and will be maintained in order to develop continuos cell lines. Rescued mono-reassortant BTV strains have been generated to explore the molecular basis for contact transmission and insect vector transmission as well as and other viral properties, including interactions with the innate immune response and inhibition by interferon. Antiviral activity of statin derivatives and calcium channel inhibitors, will be further explored Project outputs and data are being and will continue to be disseminated through one or more of the four websites that have been established or associated with the project: http://www.paleblu.eu/ : the general project website, which provides project details, presentations, publications and deliverables This includes the kick off project meeting in Glasgow 2017: http://www.paleblu.eu/system/files/2019-01/2017-09-06-MeetingReportFor1stPALE-BluMeetingCVRGlasgow-LR%20update.pdf and the 2nd meeting in Rabat 2018: http://www.paleblu.eu/system/files/2019-01/2018-09-19-20-2ndPALE-BluMeetingMorocco.pdf http://btv.glue.cvr.ac.uk/#/home : the project website which hosts datacentric software package which includes sequence data, genome annotations and bioinformatic analysis tools. See WP1 above https://www.edenextdata.com/: the project spatial data archive, see also WP3 above. http://mapserver.izs.it/gis_oiemaps/: a site which displays global BTV distributions. A newly developed haploid embryonic stem cell library, is being used to characterize cellular genes and pathways essential for productive BTV-8 infection. |
Impact | The BTV Glue database (http://btv.glue.cvr.ac.uk/#/home) Publications are in preparations from the PALE-Blu consortium Scientific meetings have been organised in Glasgow, Rabat and Brussels. |
Start Year | 2016 |