UK Fusion Programme
Lead Research Organisation:
CCFE/UKAEA
Department Name: Culham Centre for Fusion Energy
Abstract
Fusion is the energy-releasing process that powers the sun and other stars. If it can be harnessed economically on earth it would be an essentially limitless source of safe, environmentally responsible energy. Fusion energy is therefore strongly mission-orientated. The most promising method uses strong magnetic fields in a tokamak configuration to allow a high temperature deuterium-tritium plasma to be generated while minimising contact with the surrounding material surfaces.The UK contributes to fusion research in two ways: (i) through the UK's own programme focused on the spherical tokamak experiment MAST, and (ii) by contributing to the Joint European Torus (JET) programme. The MAST and JET facilities are situated at Culham Science Centre. International co-operation is strong with the focus on the International Tokamak Experimental Reactor (ITER), which will be the first fusion device to achieve energy gain and sustained burn.Experimental programmes on the MAST and JET tokamaks are performed to help resolve and refine understanding of key physics issues for ITER. In addition, experimental programmes on MAST focus on testing the potential of the spherical tokamak as a more compact option for future fusion devices. A strong theory and modelling group supports the experimental programmes and contributes to the research and development of fusion materials and to studies of conceptual fusion power stations. Expansion of the research and development of ITER specialist (i.e. diagnostic and heating) systems, focuses on securing major roles for the UK in the provision of two or three of these large complex projects.The results of the research are presented in reports and publications, and at conferences, expert groups and specialist committees. Collaborations with researchers in other areas of science and technologies are pursued strongly, where the research overlaps with fusion R&D.
Organisations
People |
ORCID iD |
Christopher Llewellyn-Smith (Principal Investigator) |
Publications
McDonald D
(2007)
Recent progress on the development and analysis of the ITPA global H-mode confinement database
in Nuclear Fusion
McDonald D
(2006)
The impact of statistical models on scalings derived from multi-machine H-mode threshold experiments
in Plasma Physics and Controlled Fusion
McDonald D
(2006)
The dimensionless scaling of ELMy H-mode confinement
in Comptes Rendus. Physique
McCLEMENTS K
(2006)
The coupling of shear and fast Alfvén waves at a magnetic X-point
in Journal of Plasma Physics
McClements K
(2006)
Collective electric field effects on the confinement of fast ions in tokamaks
in Physics of Plasmas
McArdle G
(2006)
Results from evaluation of a long pulse pilot data acquisition system on MAST
in Fusion Engineering and Design
Mayoral M
(2006)
Hydrogen plasmas with ICRF inverted minority and mode conversion heating regimes in the JET tokamak
in Nuclear Fusion
Matthews G
(2007)
Overview of the ITER-like wall project
in Physica Scripta
Marinoni A
(2006)
Analysis and modelling of power modulation experiments in JET plasmas with internal transport barriers
in Plasma Physics and Controlled Fusion
Maier H
(2007)
Tungsten and beryllium armour development for the JET ITER-like wall project
in Nuclear Fusion