# Analysis of Nonlinear Partial Differential Equations

Lead Research Organisation:
University of Oxford

Department Name: Mathematical Institute

### Abstract

Partial differential equations (PDEs) are equations that relate the partial derivatives, usually with respect to space and time coordinates, of unknown quantities. They are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of phenomena in the physical, natural and social sciences, often arising from fundamental conservation laws such as for mass, momentum and energy. Significant application areas include geophysics, the bio-sciences, engineering, materials science, physics and chemistry, economics and finance. Length-scales of natural phenomena modelled by PDEs range from sub-atomic to astronomical, and time-scales may range from nanoseconds to millennia. The behaviour of every material object can be modelled either by PDEs, usually at various different length- or time-scales, or by other equations for which similar techniques of analysis and computation apply. A striking example of such an object is Planet Earth itself.Linear PDEs are ones for which linear combinations of solutions are also solutions. For example, the linear wave equation models electromagnetic waves, which can be decomposed into sums of elementary waves of different frequencies, each of these elementary waves also being solutions. However, most of the PDEs that accurately model nature are nonlinear and, in general, there is no way of writing their solutions explicitly. Indeed, whether the equations have solutions, what their properties are, and how they may be computed numerically are difficult questions that can be approached only by methods of mathematical analysis. These involve, among other things, precisely specifying what is meant by a solution and the classes of functions in which solutions are sought, and establishing ways in which approximate solutions can be constructed which can be rigorously shown to converge to actual solutions. The analysis of nonlinear PDEs is thus a crucial ingredient in the understanding of the world about us.As recognized by the recent International Review of Mathematics, the analysis of nonlinear PDEs is an area of mathematics in which the UK, despite some notable experts, lags significantly behind our scientific competitors, both in quantity and overall quality. This has a serious detrimental effect on mathematics as a whole, on the scientific and other disciplines which depend on an understanding of PDEs, and on the knowledge-based economy, which in particular makes increasing use of simulations of PDEs instead of more costly or impractical alternatives such as laboratory testing.The proposal responds to the national need in this crucial research area through the formation of a forward-looking world-class research centre in Oxford, in order to provide a sharper focus for fundamental research in the field in the UK and raise the potential of its successful and durable impact within and outside mathematics. The centre will involve the whole UK research community having interests in nonlinear PDEs, for example through the formation of a national steering committee that will organize nationwide activities such as conferences and workshops.Oxford is an ideal location for such a research centre on account of an existing nucleus of high quality researchers in the field, and very strong research groups both in related areas of mathematics and across the range of disciplines that depend on the understanding of nonlinear PDEs. In addition, two-way knowledge transfer with industry will be achieved using the expertise and facilities of the internationally renowned mathematical modelling group based in OCIAM which, through successful Study Groups with Industry, has a track-record of forging strong links to numerous branches of science, industry, engineering and commerce. The university is committed to the formation of the centre and will provide a significant financial contribution, in particular upgrading one of the EPSRC-funded lectureships to a Chair

### Publications

Briane M
(2012)

*Interior Regularity Estimates in High Conductivity Homogenization and Application*in Archive for Rational Mechanics and Analysis
HERRMANN M
(2012)

*OSCILLATORY WAVES IN DISCRETE SCALAR CONSERVATION LAWS*in Mathematical Models and Methods in Applied Sciences
Breit D
(2012)

*Solenoidal Lipschitz truncation and applications in fluid mechanics*in Journal of Differential Equations
LARSEN C
(2012)

*EXISTENCE OF SOLUTIONS TO A REGULARIZED MODEL OF DYNAMIC FRACTURE*in Mathematical Models and Methods in Applied Sciences
Bulícek M
(2013)

*Existence of Global Weak Solutions to Implicitly Constituted Kinetic Models of Incompressible Homogeneous Dilute Polymers*in Communications in Partial Differential Equations
Chen G
(2013)

*Stability of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows*in Journal of Mathematical Physics
Chen G
(2013)

*Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows*in Zeitschrift für angewandte Mathematik und Physik
BURKE S
(2013)

*AN ADAPTIVE FINITE ELEMENT APPROXIMATION OF A GENERALIZED AMBROSIO-TORTORELLI FUNCTIONAL*in Mathematical Models and Methods in Applied Sciences
Ding M
(2013)

*Global existence and non-relativistic global limits of entropy solutions to the 1D piston problem for the isentropic relativistic Euler equations*in Journal of Mathematical Physics
Chen G
(2013)

*Weakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws*in Communications in Partial Differential Equations
Bae M
(2013)

*Prandtl-Meyer reflection for supersonic flow past a solid ramp*in Quarterly of Applied Mathematics
Chen G
(2013)

*Shock Diffraction by Convex Cornered Wedges for the Nonlinear Wave System*in Archive for Rational Mechanics and Analysis
Diening L
(2013)

*Finite Element Approximation of Steady Flows of Incompressible Fluids with Implicit Power-Law-Like Rheology*in SIAM Journal on Numerical Analysis
Ball JM
(2013)

*Entropy and convexity for nonlinear partial differential equations.*in Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Capdeboscq Y
(2013)

*On one-dimensional inverse problems arising from polarimetric measurements of nematic liquid crystals*in Inverse Problems
Bourgain J
(2013)

*On the Morse-Sard property and level sets of Sobolev and BV functions*in Revista Matemática Iberoamericana
Braides A
(2014)

*An Example of Non-Existence of Plane-Like Minimizers for an Almost-Periodic Ising System*in Journal of Statistical Physics
Rindler F
(2014)

*A local proof for the characterization of Young measures generated by sequences in BV*in Journal of Functional Analysis
Bedford S
(2014)

*Function spaces for liquid crystals*
Bedford S
(2014)

*Global minimisers of cholesteric liquid crystal systems*
Mielke A
(2014)

*An Approach to Nonlinear Viscoelasticity via Metric Gradient Flows*in SIAM Journal on Mathematical Analysis
Helmers M
(2014)

*CONVERGENCE OF AN APPROXIMATION FOR ROTATIONALLY SYMMETRIC TWO-PHASE LIPID BILAYER MEMBRANES*in The Quarterly Journal of Mathematics
Hudson T
(2014)

*Existence and Stability of a Screw Dislocation under Anti-Plane Deformation*in Archive for Rational Mechanics and Analysis
Ball J
(2014)

*Quasistatic Nonlinear Viscoelasticity and Gradient Flows*in Journal of Dynamics and Differential Equations
Soneji P
(2014)

*Relaxation in BV of integrals with superlinear growth*in ESAIM: Control, Optimisation and Calculus of Variations
Napoli A
(2014)

*On the validity of the Euler-Lagrange system*in Communications on Pure and Applied Analysis
Ball J
(2014)

*An investigation of non-planar austenite-martensite interfaces*in Mathematical Models and Methods in Applied Sciences
Bulícek M
(2014)

*Analysis and approximation of a strain-limiting nonlinear elastic model*in Mathematics and Mechanics of Solids
Choi K
(2014)

*Estimates on fractional higher derivatives of weak solutions for the Navier-Stokes equations*in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Hudson T
(2015)

*Analysis of Stable Screw Dislocation Configurations in an Antiplane Lattice Model*in SIAM Journal on Mathematical Analysis
Ball J
(2015)

*Discontinuous Order Parameters in Liquid Crystal Theories*in Molecular Crystals and Liquid Crystals
Ball J
(2015)

*A probabilistic model for martensitic avalanches*in MATEC Web of Conferences
Chen G
(2015)

*Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data*in Communications in Mathematical Physics
Bedford S
(2015)

*Function Spaces for Liquid Crystals*in Archive for Rational Mechanics and Analysis
Ball J
(2015)

*Geometry of polycrystals and microstructure*in MATEC Web of Conferences
Chen GQ
(2015)

*Free boundary problems in shock reflection/diffraction and related transonic flow problems.*in Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Ball J
(2015)

*Incompatible Sets of Gradients and Metastability*in Archive for Rational Mechanics and Analysis
Serra Cassano F
(2015)

*Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation*in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Chen G
(2015)

*Weak continuity and compactness for nonlinear partial differential equations*in Chinese Annals of Mathematics, Series B
Kreisbeck C
(2015)

*Thin-film limits of functionals on A-free vector fields*in Indiana University Mathematics Journal
Chen G
(2015)

*Subsonic-Sonic Limit of Approximate Solutions to Multidimensional Steady Euler Equations*in Archive for Rational Mechanics and AnalysisDescription | This was a broad grant designed to help consolidate research on nonlinear partial differential equations in the UK. In particular the Oxford Centre for Nonlinear PDE was founded as a result of the grant and is now a leading international centre. As regards specific research advances, these were in various areas of applications of PDE, for example to fluid and solid mechnaics, liquid crystals, electromagnetism, and relativity. |

Exploitation Route | Through publications and consultation with current and former members of OxPDE. |

Sectors | Aerospace Defence and Marine Chemicals Construction Electronics Energy Environment |

URL | https://www0.maths.ox.ac.uk/groups/oxpde |

Description | Advanced Investigator Grant |

Amount | € 2,006,998 (EUR) |

Funding ID | 291053 |

Organisation | European Research Council (ERC) |

Sector | Public |

Country | Belgium |

Start | 03/2012 |

End | 03/2017 |