Nanotribology: measurement and modelling across the rubbing interface

Lead Research Organisation: Imperial College London
Department Name: Dept of Mechanical Engineering

Abstract

The term nanotribology was first coined by IBM in the early 1990s to refer to the study of tribology research and processes (such as friction and wear) at the nanoscale, i.e. at the scale of tens to thousands of atoms and molecules. Initially the main focus of nanotribology research was to understand and improve the lubrication of tiny devices such as hard discs and micromachines. More recently, nanotribology has become very important in the study of sliding biological systems such as human joints and stem cell development (it has been found that the development of stem cells into various types of specialist cells is partly-controlled by their mechanical environment).However in addition to these explicitly nanoscale systems, we now realise that many aspects of macroscale sliding contacts, such as dry friction, friction modifier additive reactions and wear are actually determined by nanoscale processes and can be best understood by applying the tools and insights that have been developed over the last fifteen years for nanotribology research. Unfortunately tribology researchers in the UK have, by and large, not kept pace with the international development of nanotribology and there is no group in the UK that has the ability to participate and compete on the world-stage in the field in more than one or two narrow areas. The problem is that world-leading nanotribology research requires the coupling of several different, advanced experimental and numerical techniques (nanoprobes, focussed ion beam milling, spectroscopy, molecular dynamics simulation etc.) and UK tribology groups have tended not to have the resources and background to be able to establish such a broad activity.The intention of this Grant application is to enable us to establish such a platform of capability for research in nanotribology. The Grant will part-fund specialists in the various key experimental and numerical skill areas required to conduct research in nanotribology, thus ensuring that we can build and maintain the broad technique base needed. These specialists, as well as providing support to research projects that need to make use of the techniques concerned, will also carry out feasibility studies aimed primarily at developing new tools for nanotribology research. The future goal will be to link nanotribology with conventional continuum tribology so as to enable modelling and prediction of the behaviour of systems where both scales are crucial, for example in the mixed lubrication of machine components, in wear and in lubrication of micro-scale biological systems.

Publications

10 25 50
publication icon
Ewen JP (2016) Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces. in Langmuir : the ACS journal of surfaces and colloids

publication icon
Myant CW (2014) The effect of transient conditions on synovial fluid protein aggregation lubrication. in Journal of the mechanical behavior of biomedical materials

publication icon
Myant C (2014) On the matter of synovial fluid lubrication: implications for Metal-on-Metal hip tribology. in Journal of the mechanical behavior of biomedical materials

publication icon
Myant C (2012) Lubrication of metal-on-metal hip joints: the effect of protein content and load on film formation and wear. in Journal of the mechanical behavior of biomedical materials

publication icon
Ponjavic A (2014) Effect of pressure on the flow behavior of polybutene in Journal of Polymer Science Part B: Polymer Physics

publication icon
Wang P (2016) Development of hydrodynamic micro-bearings in Journal of Physics: Conference Series

publication icon
Medina S (2014) A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale in International Journal of Solids and Structures

 
Description (i) Demonstration of viability of lubricating MEMS using low viscosity liquids

(ii) Novel method of lubricating MEMS combined with low viscosity liquids combined with boundary lubricating additives

(iii) Novel method of studying flow profiles in high pressure lubricated contacts using fluorescence recovery

(iv) Demonstration of highly non-Couette flow in EHD contacts sliding at high contact pressures using both experiments and molecular dynamics simulations

(v) Control of EHD friction using surface treatments

(vi) Novel method for studying organic friction modifiers on surfaces using fluorescence

(vii) Novel approach to reducing TiO2 in commercially pure titanium and titanium alloys

(viii) Development of mass-conserving algorithms to study cavitation in textured surfaces

(ix) Development of phase maps for fluids in confinement using molecular dynamics simulations

(x) Novel methods to determine stresses at the nanoscale in atomistic and molecular simulations, leading to new coupling strategies

(xi) Novel strategy to perform molecular-to-continuum coupling simulations

(xii) Develpment of software to perform multi-physics simulations involving fluid/solid interactions and multiple scales.
Exploitation Route To develop microelectromechanical systems (MEMS) which can operate reliably with hiogh sliding parts. This is currently not possible.

To reduce friction in high pressure rolling-sliding lubricated contacts by surface treatment and surface design

To explore the experimental and modelling tools developed by the group to develop new environmentally friendly lubricants and improve components reliability

To prove a means of routing production of inexpensive Ti alloys with good wear resistance

To provide tools for virtual design by integrating tribological models at different scales. Company support for follow on R&D:

Boeing

Shell

SKF

BP

Element Six

National Rail

Bosch

Afton Chemicals

Exxon Mobil

Rolls-Royce

Johnson Matthey

Oleon

Croda

AftonChemical
Sectors Aerospace, Defence and Marine,Chemicals,Energy,Environment,Healthcare,Manufacturing, including Industrial Biotechology,Transport

 
Description They have been used by numerous companies to improve their lubricant and component life models and to develop improved lubricants able to deliver low friction and thus save energy; e.g. BP, Shell, SKF, Ford, Bosch, Rolls Royce, Afton Chemical, Hyundai, Croda, Oleon
First Year Of Impact 2010
Sector Aerospace, Defence and Marine,Chemicals,Energy,Manufacturing, including Industrial Biotechology,Transport
Impact Types Societal,Economic

 
Description EPSRC Established Career Fellowship - EP/N025954/1 - A MULTIDISCIPLINARY PLATFORM FOR FUTURE TRIBOLOGICAL MODELLING
Amount £1,205,326 (GBP)
Funding ID EP/N025954/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 06/2016 
End 05/2021
 
Description Diffusion in Solutes in Polymeric Systems 
Organisation City University of Hong Kong
Country Hong Kong 
Sector Academic/University 
PI Contribution Using Fluorescence Imaging, the diffusion of small molecules across polymeric nanocomposite membranes were investigated
Start Year 2011
 
Description Joint Workshop and memorandum of understanding with State Key Tribology Laboratory (SKTL) Tsinghua, Beijing 
Organisation Tsinghua University China
Country China 
Sector Academic/University 
PI Contribution Agreement with SKTL to hold regular workshops, student exchanges etc. Two workshops held to date (2011&2012) and two student exchanges (2012), two joint papers as outcomes
Start Year 2011
 
Description SKF ENGINEERING & RESEARCH SERVICES B.V. 
Organisation SKF
Department S.K.F. Engineering & Research Services B.V
Country Netherlands 
Sector Private 
PI Contribution Establishment of SKF University Technology Centre for Tribology at Imperial College
Collaborator Contribution Funding for stablishment of SKF University Technology Centre for Tribology at Imperial College
Impact More than 10 PhD projects and eight PDRA projects to investigate transmission tribology
Start Year 2009
 
Description Shell Global Solutions UK Renewal 
Organisation Shell Global Solutions International BV
Department Shell Global Solutions UK
Country Netherlands 
Sector Private 
PI Contribution Renewal of Shell GS UTC in Fuels and Lubricants at Imperial College 2013
Collaborator Contribution Renewal of Shell GS UTC in Fuels and Lubricants at Imperial College 2018
Impact Establishment of Shell GS UTC in Fuels and Lubricants at Imperial College 2013, seven PhD projects and five PDRA projects Renewal in 2108 for a further four years - four PhD students and one PDRA project to date
Start Year 2017
 
Description The Tribology of PAEK 
Organisation Texas A&M University
Country United States 
Sector Academic/University 
PI Contribution The friction, wear and contact temperature of a PAEK contact under various loads and speeds were examined
Start Year 2012
 
Description BP Pangbourne UK Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Primary Audience
Results and Impact Description fo research findings.
Year(s) Of Engagement Activity 2012
 
Description Presentation to Shell Houston USA 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience
Results and Impact Presentation of research findings to Shell Houston USA.
Year(s) Of Engagement Activity 2014
 
Description Presentation to Shell Thornton 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presentation of reaserch findings to Shell Global Solutions Thornton.
Year(s) Of Engagement Activity 2013