India-UK advanced technology centre
Lead Research Organisation:
University of Southampton
Department Name: Electronics and Computer Science
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
People |
ORCID iD |
Lajos Hanzo (Principal Investigator) |
Publications

Huo Y
(2014)
Layered Wireless Video Relying on Minimum-Distortion Inter-Layer FEC Coding
in IEEE Transactions on Multimedia

Feng J
(2014)
Cooperative Medium Access Control Based on Spectrum Leasing
in IEEE Transactions on Vehicular Technology

Yang P
(2015)
Power Allocation-Aided Spatial Modulation for Limited-Feedback MIMO Systems
in IEEE Transactions on Vehicular Technology

Tan J
(2015)
A reduced-complexity demapping algorithm for BICM-ID systems
in IEEE Transactions on Vehicular Technology

Kadir M
(2013)
OFDMA/SC-FDMA Aided Space-Time Shift Keying for Dispersive Multiuser Scenarios
in IEEE Transactions on Vehicular Technology

Zhang J
(2014)
Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA
in IEEE Transactions on Vehicular Technology

Sui Z
(2021)
Approximate Message Passing Algorithms for Low Complexity OFDM-IM Detection
in IEEE Transactions on Vehicular Technology

Sun H
(2015)
Turbo Trellis-Coded Hierarchical-Modulation Assisted Decode-and-Forward Cooperation
in IEEE Transactions on Vehicular Technology

Aljohani A
(2013)
EXIT-Chart-Aided Joint Source Coding, Channel Coding, and Modulation Design for Two-Way Relaying
in IEEE Transactions on Vehicular Technology

Dutta A
(2014)
Minimum-Error-Probability CFO Estimation for Muti-User MIMO OFDM Systems
in IEEE Transactions on Vehicular Technology

Aljohani A
(2014)
TTCM-Aided Rate-Adaptive Distributed Source Coding for Rayleigh Fading Channels
in IEEE Transactions on Vehicular Technology

Xu C
(2013)
Reduced-Complexity Noncoherent Soft-Decision-Aided DAPSK Dispensing With Channel Estimation
in IEEE Transactions on Vehicular Technology

Hu J
(2015)
Distributed Multistage Cooperative-Social-Multicast-Aided Content Dissemination in Random Mobile Networks
in IEEE Transactions on Vehicular Technology

Liang Li
(2013)
Energy-Conscious Turbo Decoder Design: A Joint Signal Processing and Transmit Energy Reduction Approach
in IEEE Transactions on Vehicular Technology

Xu K
(2021)
MIMO-Aided Nonlinear Hybrid Transceiver Design for Multiuser Mmwave Systems Relying on Tomlinson-Harashima Precoding
in IEEE Transactions on Vehicular Technology

Yang Y
(2014)
A Low-Complexity Cross-Layer Algorithm for Coordinated Downlink Scheduling and Robust Beamforming Under a Limited Feedback Constraint
in IEEE Transactions on Vehicular Technology

Hu J
(2013)
Maximum Average Service Rate and Optimal Queue Scheduling of Delay-Constrained Hybrid Cognitive Radio in Nakagami Fading Channels
in IEEE Transactions on Vehicular Technology

Xiang L
(2021)
Low Complexity Detection for Spatial Modulation Aided Sparse Code Division Multiple Access
in IEEE Transactions on Vehicular Technology

Zou Y
(2014)
Security Versus Reliability Analysis of Opportunistic Relaying
in IEEE Transactions on Vehicular Technology

Wang Q
(2014)
A Universal Low-Complexity Symbol-to-Bit Soft Demapper
in IEEE Transactions on Vehicular Technology

Shaoshi Yang
(2013)
Approximate Bayesian Probabilistic-Data-Association-Aided Iterative Detection for MIMO Systems Using Arbitrary $M$-ary Modulation
in IEEE Transactions on Vehicular Technology

Wang Y
(2022)
RIS-Aided Hybrid Massive MIMO Systems Relying on Adaptive-Resolution ADCs: Robust Beamforming Design and Resource Allocation
in IEEE Transactions on Vehicular Technology

Chang H
(2021)
Low-Complexity Adaptive Optics Aided Orbital Angular Momentum Based Wireless Communications
in IEEE Transactions on Vehicular Technology

Yang P
(2014)
Star-QAM Signaling Constellations for Spatial Modulation
in IEEE Transactions on Vehicular Technology

Zhang P
(2014)
Embedded Iterative Semi-Blind Channel Estimation for Three-Stage-Concatenated MIMO-Aided QAM Turbo Transceivers
in IEEE Transactions on Vehicular Technology
Description | Amongst numerous new discoveries published in about 300 IEEE journal and conference papers one of the most innovative solutions we conceived is related to the employment of multiple transmit and receive antennas in mobile phones and in the base-stations providing radio coverage for the handsets. |
Exploitation Route | The findings were disseminated in about a dozen keynote lectures and 300+ IEEE/IET research papers for further exploitation both by the academic and industrial community. Our industrial partners directly benefitted from these findings and so did our PhD, MSc and UG students. |
Sectors | Agriculture Food and Drink Digital/Communication/Information Technologies (including Software) Electronics Transport |
URL | httP://www-mobile.ecs.soton.ac.uk |
Description | The findings are influencing the standardization of the fifth generation of mobile phone systems across the globe. These findings also inspired many Indian PhD students, several of whom visited Southampton University, accompanied by their Professors. The best links are with IITM in Chennai and IISc in Bombay. These finding also led to the signing of on MOU between Southampton and IITM. This collaboration evolved very successfully along many parallel avenues, including an extended collaboration with the Indian industrial partners. I will be travelling to Chennai and Bangalore for further discussions with Nokia, IBM and many SMEs. Furthermore, I will be giving a keynote lecture at http://www.wispnet2017.org/#keynote -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Updated in 2021 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- This remarkable collaborative project is really having a long-term benefit for many of us in the UK and for our collaborators in India. Explicitly, even after the completion of the project I've coauthored 10 IEEE journal papers with Prof. Aditya Jagannatham of IIT Kanpur, and a similar number of IEEE journal papers with Prof. KVS Hari of the famous IISc in Bangalore as well as with Prof. Sheetal Kalyani of IIT Madras. Many of these contributions influenced the thinking of the 3GPP 5G standardization body in the following research areas: Non-Orthogonal Multiple Access (NOMA), the Internet of Things (IoT), mm-wave communications relaying on sophisticated hybrid beam-forming schemes, Simultaneous Wireless Information and Power Transfer (SWIPT), energy harvesting, mobile edge-computing, spatial modulation, radically new polar codes for the 5G control channels, automatic repeat request schemes for enhancing the link reliability, physical-layer security enhancements, just to name a few. I have also given numerous keynote lectures based on the findings of this exquisite project. It also helped me in drafting my 2.5 Million Euro European Research Council Advanced Fellow Grant. Finally, it also led to a long-term win-win collaboration with BT for my team. As a result, BT have also employed one of my PhD students in ipswich. |
First Year Of Impact | 2016 |
Sector | Agriculture, Food and Drink,Creative Economy,Digital/Communication/Information Technologies (including Software),Education,Electronics,Transport |
Impact Types | Cultural Societal Economic |
Description | Harnessing Quantum-Computing & Signal Processing in Wireless Communications |
Organisation | Indian Institute of Technology Madras |
Country | India |
Sector | Academic/University |
PI Contribution | We published several joint 4* papers, which contribute to the REF; |
Collaborator Contribution | Deriving closed-form equations for characterizing device-to-device communications and IoT |
Impact | mathematics, information theory, signal processing, computer science, telecommunications engineering |
Start Year | 2017 |