EPSRC Fellowships in Manufacturing: Additive nanomanufacturing via probe-based pick-and-place nanoparticle assembly
Lead Research Organisation:
University of Oxford
Department Name: Materials
Abstract
The United Nations University in Tokyo estimates that an average 2g silicon chip costs 1.6kg of fossil fuel, 73g of chemicals and 32 kg of water. This is primarily because the nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations thus far in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. Meanwhile in academia, considerable research into self-assembly of nanoscale particles has also been of interest. These techniques have been very important in understanding how to use chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The proposed research aims to have nanoscale robotic arms picking and placing nanoparticles to manufacture new devices with increased functionality, update nanoscale devices and to reduce the subtractive waste generated in nanomanufacturing.
Planned Impact
The global market for semiconductors is estimated to be worth $279 billion. In contrast to heavy manufacturing areas, a standard silicon fabrication plant costs in excess of $1.5 billion and has immense running costs in terms of the scientists required to operate them. This market is reliant on the use of these specialised and highly expensive fabrication plants. This drives up the cost of development and limits innovation in this sector. Furthermore, this industry has traditionally had the perception of being a 'clean' industry environmentally, and they have a large impetus to adapt technologies that are more environmentally friendly. The reduction in costs of water waste that is a result of the frequent cleansing requirements in a layer-by-layer subtractive manufacturing process will be an obvious impact of the proposed process.
Whist the manufacturing plants are predominantly in the US and Far East, the design and development of silicon chips is concentrated first in the US and then in Europe. In fact the South West of England is home to the biggest silicon design cluster outside of Silicon Valley. The region is home to over 200 design and development companies including major internationals such as ST Microelectronics, Broadcom, Nvidia and Infineon. Such a fundamental change in the manufacturing process has significant potential for impact improving their bottom line through cheaper processes. Smaller design houses could bring products to market far more quickly and cheaply should the process be validated, opening up the market to greater innovation and growth potential. Therefore, this cluster has a direct interest in the research project and in order to use their knowledge I intend to work with the Microelectronics iNet (support letter attached), a network dedicated to this cluster. With the additional involvement of global semiconductor firms, this will ensure the explicit involvement on the industry, as this is essential to establish impact.
The proposed project is ambitious, and has the potential for very high impact in an industry that the PI is very familiar with. In addition to the industrial advisory committee, impact activities including presenting research at conferences attended by the industry and government stakeholders such as the Materials Research Society meetings and IEEE Nanotechnology Conferences will be undertaken. Peer reviewed research articles in journals such as Nanotechnology, Nano Letters and IEEE Transactions on Nanotechnology will also be submitted.
The University of Exeter's Business School is actively pursuing research on, and has practical commitments with regard to responsible innovation, in particular on how impact is achieved by scientific research and technological innovation stemming from emerging techno-scientific fields, such as nanotechnology. Dr Elena Simakova, Lecturer of Management and a Social Scientist at the University of Exeter, will thus dedicate 5% of her time to study the societal relevance of the research of this project. Given public concerns over the potential ill effects of nanomanufacturing using nanoparticles, such a cross-disciplinary approach to impact is timely and innovative.
Whist the manufacturing plants are predominantly in the US and Far East, the design and development of silicon chips is concentrated first in the US and then in Europe. In fact the South West of England is home to the biggest silicon design cluster outside of Silicon Valley. The region is home to over 200 design and development companies including major internationals such as ST Microelectronics, Broadcom, Nvidia and Infineon. Such a fundamental change in the manufacturing process has significant potential for impact improving their bottom line through cheaper processes. Smaller design houses could bring products to market far more quickly and cheaply should the process be validated, opening up the market to greater innovation and growth potential. Therefore, this cluster has a direct interest in the research project and in order to use their knowledge I intend to work with the Microelectronics iNet (support letter attached), a network dedicated to this cluster. With the additional involvement of global semiconductor firms, this will ensure the explicit involvement on the industry, as this is essential to establish impact.
The proposed project is ambitious, and has the potential for very high impact in an industry that the PI is very familiar with. In addition to the industrial advisory committee, impact activities including presenting research at conferences attended by the industry and government stakeholders such as the Materials Research Society meetings and IEEE Nanotechnology Conferences will be undertaken. Peer reviewed research articles in journals such as Nanotechnology, Nano Letters and IEEE Transactions on Nanotechnology will also be submitted.
The University of Exeter's Business School is actively pursuing research on, and has practical commitments with regard to responsible innovation, in particular on how impact is achieved by scientific research and technological innovation stemming from emerging techno-scientific fields, such as nanotechnology. Dr Elena Simakova, Lecturer of Management and a Social Scientist at the University of Exeter, will thus dedicate 5% of her time to study the societal relevance of the research of this project. Given public concerns over the potential ill effects of nanomanufacturing using nanoparticles, such a cross-disciplinary approach to impact is timely and innovative.
Organisations
- University of Oxford, United Kingdom (Collaboration, Fellow, Lead Research Organisation)
- Defence Science & Technology Laboratory (DSTL) (Collaboration)
- University of Southampton, United Kingdom (Collaboration)
- Fraunhofer Society (Collaboration)
- BASF (Collaboration)
- Interuniversity Micro-Electronics Centre (Collaboration)
- Sony (Collaboration)
- CreaPhys GmbH (Collaboration)
- M-Solv (Collaboration)
- IBM, United States (Collaboration, Project Partner)
- Sharp Laboratories of Europe Ltd, United Kingdom (Collaboration)
- Oxford Instruments plc (Collaboration)
- University of Pennsylvania, United States (Collaboration)
- Plasma App Ltd (Collaboration)
- Swiss Center for Electronics and Microtechnology (Collaboration)
- Thales Group, United Kingdom (Collaboration)
- Oxford Instruments Asylum Research (Collaboration)
- Oxford Photovoltaics (Collaboration)
- Eckersley O'Callaghan (Collaboration)
- Centre for Process Innovation (CPI) (Collaboration)
- Heliatek GmbH (Collaboration)
- iNets South West, United Kingdom (Collaboration, Project Partner)
- University of Muenster (Munster), Germany (Collaboration)
- Msolv Ltd (Collaboration)
- Kurt J Lesker Company (Collaboration)
- University of Exeter, United Kingdom (Collaboration)
- National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS) (Collaboration)
- PragmatIC Printing Ltd, United Kingdom (Collaboration)
- Bodle Technologies Ltd (Collaboration)
- Asylum Research, United States (Project Partner)
People |
ORCID iD |
Harish Bhaskaran (Principal Investigator / Fellow) |
Publications

Gerardo Rodriguez-Hernandez
(2016)
Study of Ge2Sb2Te5 properties for opto-electronic applications

Ghazi Sarwat
(2016)
Ultimate Limit of Nanoscale Devices: Graphene Nano-gaps

Ghazi Sarwat S
(2019)
Strong Opto-Structural Coupling in Low Dimensional GeSe Films.
in Nano letters

Ghazi Syed
(2017)
Scaling Limit of Graphene Nanoelectrodes

Ghazi Syed
(2017)
Poster

Ghazi Syed
(2017)
Ultimate Limit of Scaling Nanodevices: Graphene Nano-gaps

H. Bhaskaran,
(2016)
Photonic memories based on phase change materials

Harish Bhaskaran
(2016)
Germanium


Harish Bhaskaran
(2016)
WAFT Annual Meeting 2016

Harish Bhaskaran
(2015)
An optoelectronic framework enabled by low-dimensional phase change films

Harish Bhaskaran
(2017)
Phase Change Optoelectronics (INVITED)

Harish Bhaskaran
(2017)
Photonics devices for emerging computation (Plenary Lecture)


Harish Bhaskaran
(2015)
An optoelectronic framework enabled by low-dimensional phase change films

Hosseini P
(2015)
Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices
in IEEE Electron Device Letters

Hosseini P
(2015)
2-D Materials as a Functional Platform for Phase Change Tunable NEMS
in IEEE Access

Hosseini P
(2014)
An optoelectronic framework enabled by low-dimensional phase-change films.
in Nature


Hosseini P.
(2014)
On the electro-optical properties and applications of phase change materials

Hosseini P.
(2013)
Mixed-Mode Electro Optical Properties of Ge2Sb2Te5

Hosseini P.
(2015)
Phase change materials in Light modulating applications beyond data storage

Johannes Feldmann
(2017)
Computing with light using a chip-scale all-optical abacus
in Light Science and Applications

John Sandford O'Neill
(2016)
Wearable and Flexible Technologies

Kumar M
(2015)
Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems.
in Nano letters
Description | We have developed Kelvin Force Mircroscopy methods out of necessity as we existing methods were deemed insufficient for the purposes of verifying nanoparticle charges. Specifically, we were unable to replicate past experiments by other groups on charge-drive nanoparticle assembly and suspected that nanoparticle charge was the issue. However, this led to an entirely new enquiry into the exact mechanism that drives nanoparticle assembly and recently we have found evidence that the Janus interface drives such assembly. This in an entirely new finding for nanoparticles, and we are now in the process of verifying this new finding thoroughly. Having also carried out the most comprehensive survey of Additive Nanomanufacturing methods, we also have started a substantial program to build an Electrohydrodynamic Jet Printing set-up to print 300 nm or smaller lines to enable true additive nanomanufacturing. This is an ongoing grant that has resulted in influencing many tangential research areas, particularly in the areas of solid state displays, where our group's results have captured a lot of world-wide attention and have resulted in some IP generation and £137,000 in seed-funding to allow for commercialization. We have also so far developed an EHD based nano patterning system, as well as advanced modelling techniques to enable the prediction of nano particle movement in charged liquids. Going into more detail, our capability regarding EHD nanopatterning allows us to pattern self-assembled monolayer compounds on surfaces, thus enabling further functionalization -particularly with nanoparticles. This has implications for SERS devices, single particle implications and nanoplasmonic structure formation. We are also able to demonstrate local resist deposition to enable further manufacturing goals. Recently, we demonstrated that PMMA can be printed using EHD with dimensions of up to 700 nm. In order to achieve fully the objective of flexible electronic devices, a lot of attention has been given to developing conductive polymeric inks. Traditional conductive inks used have been metal based. Whilst these provide good performance, they fracture very easily and do not survive extended stress due to bending. Polymer inks are more mechanically able to withstand strain and bending. A good understanding of their physical properties is necessary for optimal printing using EHD. Fundamental study into how surfaces can be tailored to enhance the resolution of printed structures has been a major effort. Whilst lithography is not traditionally considered an additive technique, it can be exploited to enable better additive processing. By modifying a surface with a series of channels, or nanopores, we have demonstrated a drastic improvement in the resolution achievable with EHD, more so when self-assembled monolayers are utilizing in controlling the surface wetting.With the use of self-assembled monolayers, surface energy control is afforded (hydrophobicity). This is a well-documented process. However, the electrical properties of these monolayers is less well known. We have sought to understand the dielectric breakdown points of these monolayers in order to know the safe-operating limits of EHD without damaging the films, thus limiting the resolution achievable. We have observed that under extreme electric fields, such as those generated during EHD, the contact angle of water droplets changes drastically after exposure of the monolayers to the fields. In additional we have also developed processes for self-aligned graphene electrodes with nanometer dimensions, and showed (unexpectedly) that there is a scaling limit to these. This work was published and well received by the scientific community. In addition, we have also shown significant progress in metrology, work that has led on to elucidate mechanisms in subsequent work done the the EPSRC funded WAFT program. |
Exploitation Route | Our findings have been used to develop a spin-out company to develop displays (www.bodletechnologies.com); They have resulted in advanced metrology techniques that are now being used to help a range of 2D materials characterization at the nanoscale by other groups; Our findings on the scaling limits of nano gaps are helping guide predictions on how graphene electrodes can be scaled (i.e. there is a limit), but importantly sheds potential problems in molecular measurements using nanoscale graphene electrodes (i.e. are you measuring what you think you are?). These are important scientific results that can help guide future work in this area. We developed other tools including optoelectronic measurement tools which can be used by many other fields and we will actively investigate how to continue to improve on that new added capability which was a result of this grant. |
Sectors | Aerospace, Defence and Marine,Chemicals,Creative Economy,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Healthcare,Manufacturing, including Industrial Biotechology,Culture, Heritage, Museums and Collections |
URL | http://nanoeng.materials.ox.ac.uk/Advanced_Nanoscale_Engineering_at_Oxford/Home.html |
Description | The impact of this award is still evolving, as the grant finished only in January 2018; however, the impact of the research that arose from this award has been significant. One of the first things that evolved out of this work was the deployment of an AFM tool with high current capability (as reported in research methods). However, that tool was used not just for nano manufacturing, but was used to pattern phase change materials to probe their suitability for optoelectronic applications. Out of these exploratory experiments, a new area emerged - the field of phase change optoelectronics. A discovery that very thin films of these materials can be used to create tunable color was patented and subsequently spun-out into a firm, Bodle Technologies Limited, in 2015. The firm to-date has raised £10 million is private sector funding and is commercializing the world's first Solid State Reflective Displays (SRD, a registered trademark of Bodle). The potential impact of such displays is staggering, not just in terms of the market potential (from $4 bn - 20 bn annually), but also in terms of the societal impact such non-emissive displays can have. It has been shown in peer-reviewed work that humans learn and retain better when they use non -emissive displays (paper, e-ink) as opposed to emissive displays (LCD and OLEDs). Indeed, the emissive displays are linked with poor sleep cycles and poor retention for several years. The commercialization of the world's first non-emissive color display could thus have large societal impact. In addition, during the course of this grant, an influential review article on "Additive Nanomanufacturing" was published which popularized the use of this term. Subsequently this work has been cited by several papers including text book in the field. Work done during the course of this project has created the most sensitive NEMS resonator (with single molecule mass sensitivity), work that has been very well received in the field, as a potential route towards developing room temperature sensors with high sensitivity. The impact of this work is still evolving. In addition, we have developed techniques to print on flexible substrates with high resolution as well as novel metrology techniques, all of which we expect would have an impact as these fields move into commercialization over the next decade. This grant has led to the follow-up extension of the grant for a further 3 years, and the PI has taken a partial leave of absence to do a paid secondment at Bodle Technologies Limited to allow for continuous industrial updating of skills. |
First Year Of Impact | 2013 |
Sector | Chemicals,Communities and Social Services/Policy,Creative Economy,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Healthcare,Manufacturing, including Industrial Biotechology,Pharmaceuticals and Medical Biotechnology |
Impact Types | Cultural,Societal,Economic,Policy & public services |
Description | Designing Nanosystems: the CMOS Way; Standard Research - NR1 |
Amount | £298,001 (GBP) |
Funding ID | EP/N010159/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 01/2016 |
End | 11/2017 |
Description | ICT31: Fun-Comp |
Amount | £3,996,951 (GBP) |
Funding ID | 780848 |
Organisation | European Commission |
Sector | Public |
Country | European Union (EU) |
Start | 03/2018 |
End | 02/2022 |
Description | Invited Renewal - EPSRC Manufacturing Fellowship |
Amount | £1,116,378 (GBP) |
Funding ID | EP/R001677/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 01/2019 |
End | 01/2022 |
Description | Next Generation Chalcogenides (ChAMP); MaFuMa grant |
Amount | £2,508,176 (GBP) |
Funding ID | EP/M015130/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 02/2015 |
End | 01/2020 |
Description | Next generation computer memories - using light to store data; IAA grant |
Amount | £93,886 (GBP) |
Funding ID | EP/R511742/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 08/2017 |
End | 03/2020 |
Description | Wearable and Flexible Technologies (WAFT); MaFuMa grant |
Amount | £2,476,881 (GBP) |
Funding ID | EP/M015173/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 05/2015 |
End | 04/2020 |
Title | High current conductive AFM |
Description | Our set-up on an Asylum MFP 3D atomic force microscope allows us to induce up to 1 mA of current through a conductive AFM tip. This allows us to probe the nanoscale electrical properties of functional materials at current densities commonly used in real world devices, helping accelerate real-world usability of such materials in devices that have dimensions of devices, eliminating the need for lithographic patterning in order to screen novel materials. We have successfully used this to characterize phase change materials, and more recently are adapting this for 2D materials. |
Type Of Material | Improvements to research infrastructure |
Year Produced | 2017 |
Provided To Others? | Yes |
Impact | A spin out company Bodle. Several papers and patents resulting from the development of this technique. |
Title | Optoelectronic testing station - Fiber Coupling with nanometer precision |
Description | Set-ups used for combined optoelectronic testing of nanoscale and microscope devices have several limitations with respect to mechanical, electrical and optical operation properties. Therefore, in order to continue with the study of mixed mode electro-optical operation of functional materials, a new experimental set-up with better characteristics was required. The following features were identified. In order to aim the laser accurately on the device, a raster reflectivity scan was necessary. This, in turn, called for the improvement in reproducibility of the stage position, as well as a reduction of the drift due to thermal expansion and mechanical relaxation of the components. Additionally, by reducing mechanical drift, the time available to perform the test would also increase, allowing for better focusing and aiming into the area of interest. Improvement in the scan step resolution was also required, in comparison to the 100nm step resolution provided by the pico-motors of the former setup. Also, nano-second range optical and electrical pulses were needed to induce amorphization of GST devices. All of the before mentioned requirements were subsequently incorporated into a new experimental setup in a way which is described in detail in a thesis submitted by Gerardo Rodriguez Henandez whilst working in Harish Bhaskaran's laboratory. The requirements for the optical component of the experimental setup corresponded closely to a laser-scanning microscope. Such an instrument produces images by raster scanning a focused laser beam on a given sample and acquiring the intensity of the reflected signal at every point during the scan. However, higher power than that required to simply acquire reflectance scans (3mW) was also needed to optically induce phase changes of phase change materials (~60mW). One important feature in the current design was the use of fibre-coupled optical components. Such components allow a reduction of the setup footprint, simplify the alignment and improve the sensitivity to vibration and are generally safer to use. |
Type Of Material | Improvements to research infrastructure |
Year Produced | 2017 |
Provided To Others? | Yes |
Impact | A paper and a research thesis was published. 2 new patents have been filed. |
Description | EPSRC Fellow in Manufacturing - Industrial Partners |
Organisation | IBM |
Department | IBM Research Zurich |
Country | Switzerland |
Sector | Private |
PI Contribution | My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality. |
Collaborator Contribution | The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights. |
Impact | High standard journal papers and invited talks in prestigious conferences. |
Start Year | 2013 |
Description | EPSRC Fellow in Manufacturing - Industrial Partners |
Organisation | Oxford Instruments Asylum Research |
Country | United States |
Sector | Private |
PI Contribution | My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality. |
Collaborator Contribution | The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights. |
Impact | High standard journal papers and invited talks in prestigious conferences. |
Start Year | 2013 |
Description | EPSRC Fellow in Manufacturing - Industrial Partners |
Organisation | iNets South West |
Country | United Kingdom |
Sector | Private |
PI Contribution | My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality. |
Collaborator Contribution | The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights. |
Impact | High standard journal papers and invited talks in prestigious conferences. |
Start Year | 2013 |
Description | Fun-Comp |
Organisation | IBM |
Department | IBM Research Zurich |
Country | Switzerland |
Sector | Private |
PI Contribution | Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art. |
Collaborator Contribution | Research |
Impact | N/A |
Start Year | 2018 |
Description | Fun-Comp |
Organisation | Interuniversity Micro-Electronics Centre |
Country | Belgium |
Sector | Academic/University |
PI Contribution | Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art. |
Collaborator Contribution | Research |
Impact | N/A |
Start Year | 2018 |
Description | Fun-Comp |
Organisation | National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS) |
Country | France |
Sector | Academic/University |
PI Contribution | Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art. |
Collaborator Contribution | Research |
Impact | N/A |
Start Year | 2018 |
Description | Fun-Comp |
Organisation | Thales Group |
Country | France |
Sector | Private |
PI Contribution | Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art. |
Collaborator Contribution | Research |
Impact | N/A |
Start Year | 2018 |
Description | Fun-Comp |
Organisation | University of Exeter |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art. |
Collaborator Contribution | Research |
Impact | N/A |
Start Year | 2018 |
Description | Fun-Comp |
Organisation | University of Münster |
Country | Germany |
Sector | Academic/University |
PI Contribution | Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art. |
Collaborator Contribution | Research |
Impact | N/A |
Start Year | 2018 |
Description | Fun-Comp |
Organisation | University of Oxford |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art. |
Collaborator Contribution | Research |
Impact | N/A |
Start Year | 2018 |
Description | Invited Manufacturing Fellowship Extension |
Organisation | IBM |
Department | IBM Research Zurich |
Country | Switzerland |
Sector | Private |
PI Contribution | industrial collaboration |
Collaborator Contribution | industrial advice |
Impact | N/A |
Start Year | 2018 |
Description | UltraSRD - Innovate UK |
Organisation | Bodle Technologies Ltd |
Country | United Kingdom |
Sector | Private |
PI Contribution | UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials. |
Collaborator Contribution | phase change material display research |
Impact | N/A |
Start Year | 2017 |
Description | UltraSRD - Innovate UK |
Organisation | M-Solv |
Country | United Kingdom |
Sector | Private |
PI Contribution | UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials. |
Collaborator Contribution | phase change material display research |
Impact | N/A |
Start Year | 2017 |
Description | UltraSRD - Innovate UK |
Organisation | University of Oxford |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials. |
Collaborator Contribution | phase change material display research |
Impact | N/A |
Start Year | 2017 |
Description | UltraSRD - Innovate UK |
Organisation | University of Southampton |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials. |
Collaborator Contribution | phase change material display research |
Impact | N/A |
Start Year | 2017 |
Description | WAFT Industrial Partners |
Organisation | BASF |
Country | Germany |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Bodle Technologies Ltd |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Centre for Process Innovation (CPI) |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | CreaPhys GmbH |
Country | Germany |
Sector | Academic/University |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Defence Science & Technology Laboratory (DSTL) |
Country | United Kingdom |
Sector | Public |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Eckersley O'Callaghan |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Fraunhofer Society |
Country | Germany |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Heliatek GmbH |
Country | Germany |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | IBM |
Department | IBM Research Zurich |
Country | Switzerland |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Kurt J Lesker Company |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Msolv Ltd |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Oxford Instruments |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Oxford Instruments Asylum Research |
Country | United States |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Oxford Photovoltaics |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Oxford Photovoltaics |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Plasma App Ltd |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Pragmatic Printing Ltd |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | SONY |
Country | Japan |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Sharp Laboratories of Europe Ltd |
Country | United Kingdom |
Sector | Private |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | Swiss Center for Electronics and Microtechnology |
Country | Switzerland |
Sector | Charity/Non Profit |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | University of Münster |
Country | Germany |
Sector | Academic/University |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Description | WAFT Industrial Partners |
Organisation | University of Pennsylvania |
Country | United States |
Sector | Academic/University |
PI Contribution | The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development. |
Collaborator Contribution | The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few. |
Impact | Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session. |
Start Year | 2015 |
Title | H Bhaskaran 1321429.1 |
Description | Patent Application Status: File. Type: Priority. Application Date: 4 Dec 2013. |
IP Reference | GB1321429.1 |
Protection | Patent application published |
Year Protection Granted | 2013 |
Licensed | No |
Impact | No impact yet. |
Title | H Bhaskaran 1322912.5 |
Description | Patent Application Status: File. Type: Priority. Application Date: 23 Dec 2013. |
IP Reference | GB1322912.5 |
Protection | Patent application published |
Year Protection Granted | 2013 |
Licensed | No |
Impact | No impact yet. |
Title | H Bhaskaran 1322917.4 |
Description | Patent Application Status: File. Type: Priority. Application Date: 23 Dec 2013. |
IP Reference | GB1322917.4 |
Protection | Patent application published |
Year Protection Granted | 2013 |
Licensed | No |
Impact | No impact yet. |
Title | H Bhaskaran 1417974.1 |
Description | Patent Application Status: File. Type: Priority. Application Date: 10 Oct 2014. |
IP Reference | GB1417974.1 |
Protection | Patent application published |
Year Protection Granted | 2014 |
Licensed | No |
Impact | No impact yet. |
Title | H Bhaskaran 1417976.6 |
Description | Patent Application Status: File. Type: Priority. Application Date: 10 Oct 2014 |
IP Reference | GB1417976.6 |
Protection | Patent application published |
Year Protection Granted | 2014 |
Licensed | No |
Impact | No impact yet. |
Title | H Bhaskaran 1509992.2 |
Description | Patent Application Status: File, Type: Priority. Application Date: 9 June 2015. |
IP Reference | GB1509992.2 |
Protection | Patent application published |
Year Protection Granted | 2015 |
Licensed | No |
Impact | No impact yet. |
Title | H Bhaskaran 1512914.1 |
Description | Patent Application Status: File, Type: Priority. Application Date: 22 July 2015. |
IP Reference | GB1512914.1 |
Protection | Patent application published |
Year Protection Granted | 2015 |
Licensed | No |
Impact | No impact yet. |
Title | H Bhaskaran 1516579.8 |
Description | Patent Application Status: File, Type: Priority. Application Date: 18 Sept 2015 |
IP Reference | GB1516579.8 |
Protection | Patent application published |
Year Protection Granted | 2015 |
Licensed | No |
Impact | No impact yet. |
Title | H Bhaskaran 1518371.8 |
Description | Patent Application Status: File, Type: Priority. Application Date: 16 Oct 2015. |
IP Reference | GB1518371.8 |
Protection | Patent application published |
Year Protection Granted | 2015 |
Licensed | No |
Impact | No impact yet. |
Company Name | Bodle Technologies Limited |
Description | Bodle develops and commercialises a new class of active smart glazing products and displays. |
Year Established | 2015 |
Impact | Bodle's core technology is about the creation and manipulation of colour that is reflected off a surface by changing the refractive index of ultra-thin functional layers. The technology is completely revolutionary, as it can achieve all of the following: • Extremely high resolution, with pixel sizes of sub-100 nm already demonstrated (compared to several micrometers for the best current technology). • Capable of very deep colour hues matching and even exceeding the range of colours possible by the latest technologies in displays • Can be clearly viewed in bright lighting conditions • Eye fatigue minimal as displays similar to paper • Very low power similar to electrochromic displays • Extremely high speed switching capable of video rendition in reflective mode, and even holographic displays possible as switching speeds are much lower than microseconds. |
Website | http://www.bodletechnologies.com |
Description | 12th International Workshop on Materials Behaviour at the Micro and nano Scale, China |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Faciliated discussion |
Year(s) Of Engagement Activity | 2019 |
Description | E\PCOS 2019 |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Invited speaker, hosting the 2020 E\PCOS Conference |
Year(s) Of Engagement Activity | 2019 |
URL | http://epcos2019.cea.leti.fr/Documents/Final%20program%20EPCOS2019.pdf |
Description | FunComp Review Meetings x 3: Oxford, Belgium & Zurich (latter web based) |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Discussion of current outcomes and progress, sharing of ideas for future development and direction |
Year(s) Of Engagement Activity | 2019,2020 |
Description | Future Directions of Chalcogenides Research Workshop |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Facilitated discussions |
Year(s) Of Engagement Activity | 2019 |
Description | Harish Bhaskaran: Reflecting on Displays - the future of colour - TEDxEton talk, video on youtube.com |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Public/other audiences |
Results and Impact | How phase change materials and the development of nano-scale components will change the nature of colour displays. |
Year(s) Of Engagement Activity | 2017 |
URL | https://www.youtube.com/watch?v=Y3oBBMxX-u8 |
Description | Invited Colloquium UPenn |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | discussion and questions. |
Year(s) Of Engagement Activity | 2019 |
URL | https://www.physics.upenn.edu/events/2019/04/17/special-meammse-seminar-scalable-functional-phase-ch... |
Description | MIT Colloquium Dec 2019 |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | Invited Colloquium sparked discussions and questions. |
Year(s) Of Engagement Activity | 2019 |
Description | MME 2019 Conference, Oxford |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Hosted the well established European annual workshop on microtechnology. |
Year(s) Of Engagement Activity | 2019 |
Description | MRS Fall Meeting Dec 2019 |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Keynote speaker: Optoelectronic Applications of Phase Change Materials, faciliated discussion |
Year(s) Of Engagement Activity | 2019 |
URL | https://www.mrs.org/fall2019/activities-events/other/electronics-and-photonics-workshop |
Description | Media Interview BBC World Service Radio: Digital Planet |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Media (as a channel to the public) |
Results and Impact | Following publication of paper: Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett1, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran published in Science Advances, 29 November 2019 |
Year(s) Of Engagement Activity | 2019 |
Description | Nature Publication: Research Highlight in response to press release |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Responded to request for information for a Research Highlight Article regarding paper Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality published in Science Advances, 29 November 2019. Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran |
Year(s) Of Engagement Activity | 2019 |
Description | On-chip photonics synapse - Overview of attention for article published in Science Advances - 18 news stories from 18 outlets |
Form Of Engagement Activity | A magazine, newsletter or online publication |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Public/other audiences |
Results and Impact | Photonic microchips will process information like the human brain (Digital Journal, 08 Oct 2017); On-Chip Photonic Synapse Mimics Neural Synapse (Photonics.com, 04 Oct 2017); Researchers Have Developed Microchips That Behave Like Brain Cells (True Viral News, 02 Oct 2017; Phase-change material makes first on-chip photonics synapse (Nanotechweb, 29 Sep 201); Brain-like photonic microchips developed (The Hindu Business Line, 29 Sep 2017); ?????? ??????? ?????????? ????? ????? ????????? ? ??????? ????????? ????????? (Vesti.ru, 29 Sep 201); Brain-like photonic microchips developed (The Financial Express (IND), 29 Sep 2017); Brain-like photonic microchips developed (Business Standard, 29 Sep 2017); "Brain-like" photonic microchips may lead to new generation of computing: research (China.org, 28 Sep 2017); Scientists Make a Crucial Step Towards Unlocking the "Holy Grail" of Computing (Azooptics.com, 28 Sep 2017); Microchip Concept That Mimics Brain Cells Could Change The Future Of Computers (International Business Times, 28 Sep 2017); Photonics takes a step towards creating brain-like photonics microchips (MWEE, 28 Sep 2017); Researchers Have Developed Microchips That Behave Like Brain Cells (Science Alert, 28 Sep 2017); Move Towards 'Holy Grail' of Computing by Creation of Brain-like Photonic Microchips (Science Newsline, 27 Sep 2017); Scientists move step towards "holy grail" of computing by creating brain-like photonic microchips (University of Exeter, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (Long Room, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (EurekAlert!, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (Phys.org, 27 Sep 2017) |
Year(s) Of Engagement Activity | 2017 |
URL | http://advances.sciencemag.org/content/3/9/e1700160 |
Description | PhD Workshop at Microsoft Research Cambridge |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | Presentation and discussions |
Year(s) Of Engagement Activity | 2019 |
Description | Photonics Conference |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Conversations in Oxford - Future of Integrated Photonics in Computing, attracted global keynote speakers, and stemmed the beginning of additional events to continue to the conversation. |
Year(s) Of Engagement Activity | 2019 |
URL | http://mme2019.manucodiata.org/index.php/future-of-photonic-computing |
Description | Press Release: Science Advances Article Announcement |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Media (as a channel to the public) |
Results and Impact | Press interest resulting in radio and magazine interviews. |
Year(s) Of Engagement Activity | 2019 |
Description | QuEEN Advisory Board Meeting |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Faciliated discussion |
Year(s) Of Engagement Activity | 2019 |
Description | SPIE Conference Presentation, Baltimore April 2019 |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Invited presentation. |
Year(s) Of Engagement Activity | 2019 |
URL | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10982/109820P/Phase-change-photoni... |
Description | Ultra SRD (Innovate UK) Progress Meeting |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Faciliated discussion |
Year(s) Of Engagement Activity | 2019 |
Description | WAFT Annual Meetings |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Industry/Business |
Results and Impact | We organized WAFT Annual meetings of industrial partners. More details at http://www.waftcollaboration.org |
Year(s) Of Engagement Activity | 2015,2016,2017 |
URL | http://www.waftcollaboration.org |