EPSRC Fellowships in Manufacturing: Additive nanomanufacturing via probe-based pick-and-place nanoparticle assembly

Lead Research Organisation: University of Oxford
Department Name: Materials

Abstract

The United Nations University in Tokyo estimates that an average 2g silicon chip costs 1.6kg of fossil fuel, 73g of chemicals and 32 kg of water. This is primarily because the nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations thus far in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. Meanwhile in academia, considerable research into self-assembly of nanoscale particles has also been of interest. These techniques have been very important in understanding how to use chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The proposed research aims to have nanoscale robotic arms picking and placing nanoparticles to manufacture new devices with increased functionality, update nanoscale devices and to reduce the subtractive waste generated in nanomanufacturing.

Planned Impact

The global market for semiconductors is estimated to be worth $279 billion. In contrast to heavy manufacturing areas, a standard silicon fabrication plant costs in excess of $1.5 billion and has immense running costs in terms of the scientists required to operate them. This market is reliant on the use of these specialised and highly expensive fabrication plants. This drives up the cost of development and limits innovation in this sector. Furthermore, this industry has traditionally had the perception of being a 'clean' industry environmentally, and they have a large impetus to adapt technologies that are more environmentally friendly. The reduction in costs of water waste that is a result of the frequent cleansing requirements in a layer-by-layer subtractive manufacturing process will be an obvious impact of the proposed process.
Whist the manufacturing plants are predominantly in the US and Far East, the design and development of silicon chips is concentrated first in the US and then in Europe. In fact the South West of England is home to the biggest silicon design cluster outside of Silicon Valley. The region is home to over 200 design and development companies including major internationals such as ST Microelectronics, Broadcom, Nvidia and Infineon. Such a fundamental change in the manufacturing process has significant potential for impact improving their bottom line through cheaper processes. Smaller design houses could bring products to market far more quickly and cheaply should the process be validated, opening up the market to greater innovation and growth potential. Therefore, this cluster has a direct interest in the research project and in order to use their knowledge I intend to work with the Microelectronics iNet (support letter attached), a network dedicated to this cluster. With the additional involvement of global semiconductor firms, this will ensure the explicit involvement on the industry, as this is essential to establish impact.
The proposed project is ambitious, and has the potential for very high impact in an industry that the PI is very familiar with. In addition to the industrial advisory committee, impact activities including presenting research at conferences attended by the industry and government stakeholders such as the Materials Research Society meetings and IEEE Nanotechnology Conferences will be undertaken. Peer reviewed research articles in journals such as Nanotechnology, Nano Letters and IEEE Transactions on Nanotechnology will also be submitted.
The University of Exeter's Business School is actively pursuing research on, and has practical commitments with regard to responsible innovation, in particular on how impact is achieved by scientific research and technological innovation stemming from emerging techno-scientific fields, such as nanotechnology. Dr Elena Simakova, Lecturer of Management and a Social Scientist at the University of Exeter, will thus dedicate 5% of her time to study the societal relevance of the research of this project. Given public concerns over the potential ill effects of nanomanufacturing using nanoparticles, such a cross-disciplinary approach to impact is timely and innovative.

Publications

10 25 50
 
Description We have developed Kelvin Force Mircroscopy methods out of necessity as we existing methods were deemed insufficient for the purposes of verifying nanoparticle charges. Specifically, we were unable to replicate past experiments by other groups on charge-drive nanoparticle assembly and suspected that nanoparticle charge was the issue. However, this led to an entirely new enquiry into the exact mechanism that drives nanoparticle assembly and recently we have found evidence that the Janus interface drives such assembly. This in an entirely new finding for nanoparticles, and we are now in the process of verifying this new finding thoroughly. Having also carried out the most comprehensive survey of Additive Nanomanufacturing methods, we also have started a substantial program to build an Electrohydrodynamic Jet Printing set-up to print 300 nm or smaller lines to enable true additive nanomanufacturing. This is an ongoing grant that has resulted in influencing many tangential research areas, particularly in the areas of solid state displays, where our group's results have captured a lot of world-wide attention and have resulted in some IP generation and £137,000 in seed-funding to allow for commercialization. We have also so far developed an EHD based nano patterning system, as well as advanced modelling techniques to enable the prediction of nano particle movement in charged liquids. Going into more detail, our capability regarding EHD nanopatterning allows us to pattern self-assembled monolayer compounds on surfaces, thus enabling further functionalization -particularly with nanoparticles. This has implications for SERS devices, single particle implications and nanoplasmonic structure formation. We are also able to demonstrate local resist deposition to enable further manufacturing goals. Recently, we demonstrated that PMMA can be printed using EHD with dimensions of up to 700 nm. In order to achieve fully the objective of flexible electronic devices, a lot of attention has been given to developing conductive polymeric inks. Traditional conductive inks used have been metal based. Whilst these provide good performance, they fracture very easily and do not survive extended stress due to bending. Polymer inks are more mechanically able to withstand strain and bending. A good understanding of their physical properties is necessary for optimal printing using EHD. Fundamental study into how surfaces can be tailored to enhance the resolution of printed structures has been a major effort. Whilst lithography is not traditionally considered an additive technique, it can be exploited to enable better additive processing. By modifying a surface with a series of channels, or nanopores, we have demonstrated a drastic improvement in the resolution achievable with EHD, more so when self-assembled monolayers are utilizing in controlling the surface wetting.With the use of self-assembled monolayers, surface energy control is afforded (hydrophobicity). This is a well-documented process. However, the electrical properties of these monolayers is less well known. We have sought to understand the dielectric breakdown points of these monolayers in order to know the safe-operating limits of EHD without damaging the films, thus limiting the resolution achievable. We have observed that under extreme electric fields, such as those generated during EHD, the contact angle of water droplets changes drastically after exposure of the monolayers to the fields. In additional we have also developed processes for self-aligned graphene electrodes with nanometer dimensions, and showed (unexpectedly) that there is a scaling limit to these. This work was published and well received by the scientific community. In addition, we have also shown significant progress in metrology, work that has led on to elucidate mechanisms in subsequent work done the the EPSRC funded WAFT program.
Exploitation Route Our findings have been used to develop a spin-out company to develop displays (www.bodletechnologies.com); They have resulted in advanced metrology techniques that are now being used to help a range of 2D materials characterization at the nanoscale by other groups; Our findings on the scaling limits of nano gaps are helping guide predictions on how graphene electrodes can be scaled (i.e. there is a limit), but importantly sheds potential problems in molecular measurements using nanoscale graphene electrodes (i.e. are you measuring what you think you are?). These are important scientific results that can help guide future work in this area. We developed other tools including optoelectronic measurement tools which can be used by many other fields and we will actively investigate how to continue to improve on that new added capability which was a result of this grant.
Sectors Aerospace, Defence and Marine,Chemicals,Creative Economy,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Healthcare,Manufacturing, including Industrial Biotechology,Culture, Heritage, Museums and Collections

URL http://nanoeng.materials.ox.ac.uk/Advanced_Nanoscale_Engineering_at_Oxford/Home.html
 
Description The impact of this award is still evolving, as the grant finished only in January 2018; however, the impact of the research that arose from this award has been significant. One of the first things that evolved out of this work was the deployment of an AFM tool with high current capability (as reported in research methods). However, that tool was used not just for nano manufacturing, but was used to pattern phase change materials to probe their suitability for optoelectronic applications. Out of these exploratory experiments, a new area emerged - the field of phase change optoelectronics. A discovery that very thin films of these materials can be used to create tunable color was patented and subsequently spun-out into a firm, Bodle Technologies Limited, in 2015. The firm to-date has raised £10 million is private sector funding and is commercializing the world's first Solid State Reflective Displays (SRD, a registered trademark of Bodle). The potential impact of such displays is staggering, not just in terms of the market potential (from $4 bn - 20 bn annually), but also in terms of the societal impact such non-emissive displays can have. It has been shown in peer-reviewed work that humans learn and retain better when they use non -emissive displays (paper, e-ink) as opposed to emissive displays (LCD and OLEDs). Indeed, the emissive displays are linked with poor sleep cycles and poor retention for several years. The commercialization of the world's first non-emissive color display could thus have large societal impact. In addition, during the course of this grant, an influential review article on "Additive Nanomanufacturing" was published which popularized the use of this term. Subsequently this work has been cited by several papers including text book in the field. Work done during the course of this project has created the most sensitive NEMS resonator (with single molecule mass sensitivity), work that has been very well received in the field, as a potential route towards developing room temperature sensors with high sensitivity. The impact of this work is still evolving. In addition, we have developed techniques to print on flexible substrates with high resolution as well as novel metrology techniques, all of which we expect would have an impact as these fields move into commercialization over the next decade. This grant has led to the follow-up extension of the grant for a further 3 years, and the PI has taken a partial leave of absence to do a paid secondment at Bodle Technologies Limited to allow for continuous industrial updating of skills.
First Year Of Impact 2013
Sector Chemicals,Communities and Social Services/Policy,Creative Economy,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Healthcare,Manufacturing, including Industrial Biotechology,Pharmaceuticals and Medical Biotechnology
Impact Types Cultural,Societal,Economic,Policy & public services

 
Description Designing Nanosystems: the CMOS Way; Standard Research - NR1
Amount £298,001 (GBP)
Funding ID EP/N010159/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2016 
End 11/2017
 
Description ICT31: Fun-Comp
Amount £3,996,951 (GBP)
Funding ID 780848 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 03/2018 
End 02/2022
 
Description Invited Renewal - EPSRC Manufacturing Fellowship
Amount £1,116,378 (GBP)
Funding ID EP/R001677/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2019 
End 01/2022
 
Description Next Generation Chalcogenides (ChAMP); MaFuMa grant
Amount £2,508,176 (GBP)
Funding ID EP/M015130/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 02/2015 
End 01/2020
 
Description Next generation computer memories - using light to store data; IAA grant
Amount £93,886 (GBP)
Funding ID EP/R511742/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 08/2017 
End 03/2020
 
Description Wearable and Flexible Technologies (WAFT); MaFuMa grant
Amount £2,476,881 (GBP)
Funding ID EP/M015173/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 05/2015 
End 04/2020
 
Title High current conductive AFM 
Description Our set-up on an Asylum MFP 3D atomic force microscope allows us to induce up to 1 mA of current through a conductive AFM tip. This allows us to probe the nanoscale electrical properties of functional materials at current densities commonly used in real world devices, helping accelerate real-world usability of such materials in devices that have dimensions of devices, eliminating the need for lithographic patterning in order to screen novel materials. We have successfully used this to characterize phase change materials, and more recently are adapting this for 2D materials. 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact A spin out company Bodle. Several papers and patents resulting from the development of this technique. 
 
Title Optoelectronic testing station - Fiber Coupling with nanometer precision 
Description Set-ups used for combined optoelectronic testing of nanoscale and microscope devices have several limitations with respect to mechanical, electrical and optical operation properties. Therefore, in order to continue with the study of mixed mode electro-optical operation of functional materials, a new experimental set-up with better characteristics was required. The following features were identified. In order to aim the laser accurately on the device, a raster reflectivity scan was necessary. This, in turn, called for the improvement in reproducibility of the stage position, as well as a reduction of the drift due to thermal expansion and mechanical relaxation of the components. Additionally, by reducing mechanical drift, the time available to perform the test would also increase, allowing for better focusing and aiming into the area of interest. Improvement in the scan step resolution was also required, in comparison to the 100nm step resolution provided by the pico-motors of the former setup. Also, nano-second range optical and electrical pulses were needed to induce amorphization of GST devices. All of the before mentioned requirements were subsequently incorporated into a new experimental setup in a way which is described in detail in a thesis submitted by Gerardo Rodriguez Henandez whilst working in Harish Bhaskaran's laboratory. The requirements for the optical component of the experimental setup corresponded closely to a laser-scanning microscope. Such an instrument produces images by raster scanning a focused laser beam on a given sample and acquiring the intensity of the reflected signal at every point during the scan. However, higher power than that required to simply acquire reflectance scans (3mW) was also needed to optically induce phase changes of phase change materials (~60mW). One important feature in the current design was the use of fibre-coupled optical components. Such components allow a reduction of the setup footprint, simplify the alignment and improve the sensitivity to vibration and are generally safer to use. 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact A paper and a research thesis was published. 2 new patents have been filed. 
 
Description EPSRC Fellow in Manufacturing - Industrial Partners 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality.
Collaborator Contribution The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights.
Impact High standard journal papers and invited talks in prestigious conferences.
Start Year 2013
 
Description EPSRC Fellow in Manufacturing - Industrial Partners 
Organisation Oxford Instruments Asylum Research
Country United States 
Sector Private 
PI Contribution My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality.
Collaborator Contribution The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights.
Impact High standard journal papers and invited talks in prestigious conferences.
Start Year 2013
 
Description EPSRC Fellow in Manufacturing - Industrial Partners 
Organisation iNets South West
Country United Kingdom 
Sector Private 
PI Contribution My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality.
Collaborator Contribution The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights.
Impact High standard journal papers and invited talks in prestigious conferences.
Start Year 2013
 
Description Fun-Comp 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation Interuniversity Micro-Electronics Centre
Country Belgium 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS)
Country France 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation Thales Group
Country France 
Sector Private 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Exeter
Country United Kingdom 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Münster
Country Germany 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Invited Manufacturing Fellowship Extension 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution industrial collaboration
Collaborator Contribution industrial advice
Impact N/A
Start Year 2018
 
Description UltraSRD - Innovate UK 
Organisation Bodle Technologies Ltd
Country United Kingdom 
Sector Private 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description UltraSRD - Innovate UK 
Organisation M-Solv
Country United Kingdom 
Sector Private 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description UltraSRD - Innovate UK 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description UltraSRD - Innovate UK 
Organisation University of Southampton
Country United Kingdom 
Sector Academic/University 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description WAFT Industrial Partners 
Organisation BASF
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Bodle Technologies Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Centre for Process Innovation (CPI)
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation CreaPhys GmbH
Country Germany 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Defence Science & Technology Laboratory (DSTL)
Country United Kingdom 
Sector Public 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Eckersley O'Callaghan
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Fraunhofer Society
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Heliatek GmbH
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Kurt J Lesker Company
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Msolv Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Instruments
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Instruments Asylum Research
Country United States 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Photovoltaics
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Photovoltaics
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Plasma App Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Pragmatic Printing Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation SONY
Country Japan 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Sharp Laboratories of Europe Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Swiss Center for Electronics and Microtechnology
Country Switzerland 
Sector Charity/Non Profit 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation University of Münster
Country Germany 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation University of Pennsylvania
Country United States 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Title H Bhaskaran 1321429.1 
Description Patent Application Status: File. Type: Priority. Application Date: 4 Dec 2013. 
IP Reference GB1321429.1 
Protection Patent application published
Year Protection Granted 2013
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1322912.5 
Description Patent Application Status: File. Type: Priority. Application Date: 23 Dec 2013. 
IP Reference GB1322912.5 
Protection Patent application published
Year Protection Granted 2013
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1322917.4 
Description Patent Application Status: File. Type: Priority. Application Date: 23 Dec 2013. 
IP Reference GB1322917.4 
Protection Patent application published
Year Protection Granted 2013
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1417974.1 
Description Patent Application Status: File. Type: Priority. Application Date: 10 Oct 2014. 
IP Reference GB1417974.1 
Protection Patent application published
Year Protection Granted 2014
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1417976.6 
Description Patent Application Status: File. Type: Priority. Application Date: 10 Oct 2014 
IP Reference GB1417976.6 
Protection Patent application published
Year Protection Granted 2014
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1509992.2 
Description Patent Application Status: File, Type: Priority. Application Date: 9 June 2015. 
IP Reference GB1509992.2 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1512914.1 
Description Patent Application Status: File, Type: Priority. Application Date: 22 July 2015. 
IP Reference GB1512914.1 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1516579.8 
Description Patent Application Status: File, Type: Priority. Application Date: 18 Sept 2015 
IP Reference GB1516579.8 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1518371.8 
Description Patent Application Status: File, Type: Priority. Application Date: 16 Oct 2015. 
IP Reference GB1518371.8 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Company Name Bodle Technologies Limited 
Description Bodle develops and commercialises a new class of active smart glazing products and displays. 
Year Established 2015 
Impact Bodle's core technology is about the creation and manipulation of colour that is reflected off a surface by changing the refractive index of ultra-thin functional layers. The technology is completely revolutionary, as it can achieve all of the following: • Extremely high resolution, with pixel sizes of sub-100 nm already demonstrated (compared to several micrometers for the best current technology). • Capable of very deep colour hues matching and even exceeding the range of colours possible by the latest technologies in displays • Can be clearly viewed in bright lighting conditions • Eye fatigue minimal as displays similar to paper • Very low power similar to electrochromic displays • Extremely high speed switching capable of video rendition in reflective mode, and even holographic displays possible as switching speeds are much lower than microseconds.
Website http://www.bodletechnologies.com
 
Description 12th International Workshop on Materials Behaviour at the Micro and nano Scale, China 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description E\PCOS 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited speaker, hosting the 2020 E\PCOS Conference
Year(s) Of Engagement Activity 2019
URL http://epcos2019.cea.leti.fr/Documents/Final%20program%20EPCOS2019.pdf
 
Description FunComp Review Meetings x 3: Oxford, Belgium & Zurich (latter web based) 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Discussion of current outcomes and progress, sharing of ideas for future development and direction
Year(s) Of Engagement Activity 2019,2020
 
Description Future Directions of Chalcogenides Research Workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Facilitated discussions
Year(s) Of Engagement Activity 2019
 
Description Harish Bhaskaran: Reflecting on Displays - the future of colour - TEDxEton talk, video on youtube.com 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact How phase change materials and the development of nano-scale components will change the nature of colour displays.
Year(s) Of Engagement Activity 2017
URL https://www.youtube.com/watch?v=Y3oBBMxX-u8
 
Description Invited Colloquium UPenn 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact discussion and questions.
Year(s) Of Engagement Activity 2019
URL https://www.physics.upenn.edu/events/2019/04/17/special-meammse-seminar-scalable-functional-phase-ch...
 
Description MIT Colloquium Dec 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited Colloquium sparked discussions and questions.
Year(s) Of Engagement Activity 2019
 
Description MME 2019 Conference, Oxford 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Hosted the well established European annual workshop on microtechnology.
Year(s) Of Engagement Activity 2019
 
Description MRS Fall Meeting Dec 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Keynote speaker: Optoelectronic Applications of Phase Change Materials, faciliated discussion
Year(s) Of Engagement Activity 2019
URL https://www.mrs.org/fall2019/activities-events/other/electronics-and-photonics-workshop
 
Description Media Interview BBC World Service Radio: Digital Planet 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Following publication of paper: Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality
Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett1, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran
published in Science Advances, 29 November 2019
Year(s) Of Engagement Activity 2019
 
Description Nature Publication: Research Highlight in response to press release 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Responded to request for information for a Research Highlight Article regarding paper Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality published in Science Advances, 29 November 2019.
Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran
Year(s) Of Engagement Activity 2019
 
Description On-chip photonics synapse - Overview of attention for article published in Science Advances - 18 news stories from 18 outlets 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Photonic microchips will process information like the human brain (Digital Journal, 08 Oct 2017); On-Chip Photonic Synapse Mimics Neural Synapse (Photonics.com, 04 Oct 2017); Researchers Have Developed Microchips That Behave Like Brain Cells (True Viral News, 02 Oct 2017; Phase-change material makes first on-chip photonics synapse (Nanotechweb, 29 Sep 201); Brain-like photonic microchips developed (The Hindu Business Line, 29 Sep 2017); ?????? ??????? ?????????? ????? ????? ????????? ? ??????? ????????? ????????? (Vesti.ru, 29 Sep 201); Brain-like photonic microchips developed (The Financial Express (IND), 29 Sep 2017); Brain-like photonic microchips developed (Business Standard, 29 Sep 2017); "Brain-like" photonic microchips may lead to new generation of computing: research (China.org, 28 Sep 2017); Scientists Make a Crucial Step Towards Unlocking the "Holy Grail" of Computing (Azooptics.com, 28 Sep 2017); Microchip Concept That Mimics Brain Cells Could Change The Future Of Computers (International Business Times, 28 Sep 2017); Photonics takes a step towards creating brain-like photonics microchips (MWEE, 28 Sep 2017); Researchers Have Developed Microchips That Behave Like Brain Cells (Science Alert, 28 Sep 2017); Move Towards 'Holy Grail' of Computing by Creation of Brain-like Photonic Microchips (Science Newsline, 27 Sep 2017); Scientists move step towards "holy grail" of computing by creating brain-like photonic microchips
(University of Exeter, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (Long Room, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (EurekAlert!, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (Phys.org, 27 Sep 2017)
Year(s) Of Engagement Activity 2017
URL http://advances.sciencemag.org/content/3/9/e1700160
 
Description PhD Workshop at Microsoft Research Cambridge 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Presentation and discussions
Year(s) Of Engagement Activity 2019
 
Description Photonics Conference 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Conversations in Oxford - Future of Integrated Photonics in Computing, attracted global keynote speakers, and stemmed the beginning of additional events to continue to the conversation.
Year(s) Of Engagement Activity 2019
URL http://mme2019.manucodiata.org/index.php/future-of-photonic-computing
 
Description Press Release: Science Advances Article Announcement 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Press interest resulting in radio and magazine interviews.
Year(s) Of Engagement Activity 2019
 
Description QuEEN Advisory Board Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description SPIE Conference Presentation, Baltimore April 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited presentation.
Year(s) Of Engagement Activity 2019
URL https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10982/109820P/Phase-change-photoni...
 
Description Ultra SRD (Innovate UK) Progress Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description WAFT Annual Meetings 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact We organized WAFT Annual meetings of industrial partners. More details at http://www.waftcollaboration.org
Year(s) Of Engagement Activity 2015,2016,2017
URL http://www.waftcollaboration.org