Scalable Solar Thermoelectrics and Photovaltaics. (SUNTRAP)

Lead Research Organisation: University of Glasgow
Department Name: School of Engineering

Abstract

This research project aims to tackle the barriers inhibiting the rapid introduction of large amounts of low-cost electrical and thermal solar energy generation by driving down the cost per kWh. To do this we will:
* Develop enhanced optical concentrator systems which exhibit improved luminance uniformity over the photovoltaic cell;
* Extend the lifetime of the PV cells to beyond 50 years by the use of active thermoelectric cooling;
* Increase the energy conversion efficiency by linearising the PV cell electrical generation, controlling cell temperature and by implementing enhanced Maximum Power Point Tracking algorithms;
* Integrate a thermal storage system with the PV / TE receiver.
* Capture large amounts of thermal energy from the solar-> electrical conversion process and use this to enhance the efficiency of co-generation plant or displace fossil fuel combustion.

The technology resulting from this 4 year research programme will be commercialised throughout the project life by a number of industrial partners and be equally suited to domestic use or to utility-scale power plants connected to the grid. Such installations will make a significant contribution to the UK meeting its 2020 CO2 reduction targets and help ameliorate the growing problems of energy insecurity and energy poverty.

Planned Impact

An efficient and dependable sustainable energy supply will have a profound societal impact. The programme will simultaneously address both electricity production and thermal energy supply for traditional domestic purposes (space and water heating) and assess the potential for enhancing the generating efficiency of co-located fossil fuel plants. At utility scale, the provision of connections to the energy grids (gas and/or electricity) and associated civil works are a major component of overall plant cost. In order to drive down this cost, sharing of infrastructure is essential. Indeed, to maintain electrical power delivery during periods when PV installations suffer low insolation or darkness some alternative means of generating electricity is required. The choice to do so is limited: by massive, costly storage or via reduced fossil fuel dependence. An acceptable socio-economic adoption framework to assure stakeholder buy-in of increased solar energy generation is a vital component of our research programme. A key element of this framework is the investigation of the viability of partially displacing carbon-intensive energy generation with solar thermal systems, recognising the sociological and behavioural issues connected with their uptake. The increasing proliferation of technology required for (and requiring) a high quality electrical supply with reliable operation is directly addressed through this programme: in addition to the initial provision of suitable systems, embedding the knowledge and expertise required to develop and manufacture these systems within the UK is a specific deliverable. Distributed workpackage research activities underpin this deliverable: ultimately it is this which provides the "glue" essential to the creation of a cohesive team.

The technology being developed will, where appropriate, have any IP protected and made available through an open licensing agreement, and we will exploit the technology through U.K. industry. Our industrial partners include Flexsar, European Thermodynamics, SUNAMP, Smarter Grid Solutions, Compound Semiconductors, and several others. As the technology is developed, new U.K. industrial partners and OEMs will be brought on board as required for the supply chain to manufacture the system which is applicable to the UK consumer / domestic market and utility providers. Commercial confidence in the technology will be underpinned by independent performance validation by the National Physical Laboratory. This will directly impact on the UK sustainable energy targets, especially those for renewable energy for electricity and heating. Microgeneration systems such as can be further developed from what we propose offer an attractive proposition to numerous SMEs in the manufacturing and service sectors: widespread deployment of these systems coupled to other emerging technologies such as smart metering can make a significant impact to the UK energy budget. Additionally we expect Regional Development Organisations, Scottish Enterprise, DECC, TSB and BIS to be beneficiaries with knowledge from this project in how to implement these solar technology solutions to foreign countries, thereby increasing U.K. exports.

In the longer term as the UK looks abroad for its energy supplies, particularly to the southern EU, the Gulf and sub-saharian Africa, people with first-hand experience and understanding connected with the generation of solar energy will play an invaluable role in the construction, support, operation and maintenance of future plant. This programme seeks in part to address this future requirement through the installation of exemplar systems in Heriot Watt University's campus in Dubai. This will prove to be an invaluable source of information and continue to be a useful test-bed representative of such geographical locations long after this project ends.

Publications

10 25 50

publication icon
Li W (2016) Thermal performance of two heat exchangers for thermoelectric generators in Case Studies in Thermal Engineering

publication icon
Li W (2017) Natural convective heat transfer in a walled CCPC with PV cell in Case Studies in Thermal Engineering

publication icon
Al-Madhhachi H (2018) Key factors affecting the water production in a thermoelectric distillation system in Energy Conversion and Management

publication icon
Selvaraj P (2018) Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light in Solar Energy Materials and Solar Cells

publication icon
Sweet T (2016) Commercial photovoltaic system design for Cardiff City Hall in Proceedings of the Institution of Civil Engineers - Energy

publication icon
Mullen P (2015) A Thermoelectric Energy Harvester with a Cold Start of 0.6°C in Materials Today: Proceedings

publication icon
Alnajideen M (2022) A new configuration of V-trough concentrator for achieving improved concentration ratio of >3.0x in Solar Energy Materials and Solar Cells

 
Description Combined thermoelectric / photovoltaic panels require a longer period of use for economic return over their lifetime.
Exploitation Route Basis for further research. Still publishing work resulting from the project.
Sectors Energy

 
Description Outcomes have directly led to a new business opportunity in a spinout company
First Year Of Impact 2017
Sector Energy
Impact Types Economic