Network Coded Modulation for Next Generation Wireless Access Networks

Lead Research Organisation: University of York
Department Name: Electronics

Abstract

In view of the rapid increase in demand for mobile data services, next generation wireless access networks will have to provide greatly increased capacity density, up to 10 Gbps per square kilometre. This will require a much larger density of very small, cheap and energy-efficient base stations, and will place increasing demand on the bandwidth and energy efficiency of the network, and especially the backhaul network. Recent work on network MIMO, or coordinated multipoint (CoMP) has shown that by ensuring base stations cooperate to serve users, especially those close to cell edge, rather than interferring with one another, inter-user interference can be effectively eliminated, greatly increasing the efficiency of the network, in terms of both spectrum and energy. However this tends to greatly increase the backhaul load.

This work proposes a form of wireless network coding, called network coded modulation, as an alternative to conventional CoMP. This also enables base station cooperation, but instead of sending multiple separate information flows to each base station, flows are combined using network coding, which in principle allows cooperation with no increase in backhaul load compared to non-cooperative transmission, while gaining very similar advantages to CoMP in terms of bandwidth and energy efficiency.

The objective of the proposed work is to establish the practical feasibility of this approach, and evaluate its benefits, as applied to next generation wireless access networks. To this end it will develop practical signalling schemes, network coordination and management protocols, and, with the help of industrial collaborators, will ensure compatibility with developing wireless standards.

Planned Impact

Access to the Internet via high-speed communications links, especially mobile access, has many times been identified by Government as a major driver of economic growth. Moreover the lack of this in sections of the population, often described as "digital exclusion", is recognised as a cause of persistent poverty. The demand for mobile data is known to be increasing at a rate between 70 and 100% per year, and it is important for networks to keep pace with this demand to avoid congestion which might stifle growth.

In this context the proposed programme has the potential to impact significantly upon all users of mobile communications - that is, nearly everyone, in this country and worldwide. By enabling cost-effective access networks with greatly increased capacity density it will enable much wider access to existing Internet services, and also stimulate the growth of new services which cannot even be envisaged at present.

This will be achieved via a more immediate impact on industry, specifically upon mobile equipment manufacturers and network operators. (It may also enable entry to the market of new types of network operator, providing services on a smaller geographical scale in a more heterogeneous form of network). By enabling wireless backhaul on a much larger scale than at present it will reduce costs for operators to install new capacity, and by displacing many of the higher layer functions towards the physical layer it may reduce the energy required to provide this additional capacity, also providing environmental benefits. In turn it will create new markets for equipment providers.

However, because wireless network coding constitutes an important part of a new paradigm for wireless networks in general, it has the potential to improve efficiency across a much wider range of applications, including, for example, the "Internet of Things", "smart grid" networks, transportation and other "smart city" applications, etc. These applications will give rise to many societal benefits, including improved healthcare, more efficient and reliable energy supply, safer and more efficient transport systems, improved security and wider participation in the digital economy.

Our collaborators include network operators and equipment manufacturers, who will have an opportunity to benefit directly from the new techniques developed in providing new products and services and in improving the efficiency of their networks. This is expected to involve contributing to global standards activities, by which the impact will be greatly expanded.

Publications

10 25 50
publication icon
Bashar M (2019) Max-Min Rate of Cell-Free Massive MIMO Uplink With Optimal Uniform Quantization in IEEE Transactions on Communications

publication icon
Bashar M (2019) On the Uplink Max-Min SINR of Cell-Free Massive MIMO Systems in IEEE Transactions on Wireless Communications

publication icon
Bashar M (2020) Exploiting Deep Learning in Limited-Fronthaul Cell-Free Massive MIMO Uplink in IEEE Journal on Selected Areas in Communications

publication icon
Bashar M (2019) Energy Efficiency of the Cell-Free Massive MIMO Uplink With Optimal Uniform Quantization in IEEE Transactions on Green Communications and Networking

publication icon
Bashar M (2019) Evaluation of Low Complexity Massive MIMO Techniques Under Realistic Channel Conditions in IEEE Transactions on Vehicular Technology

publication icon
Bashar M (2018) Robust user scheduling with COST 2100 channel model for massive MIMO networks in IET Microwaves, Antennas & Propagation

publication icon
Burr A G (2014) Linear Wireless Physical Layer Network Coding based on two-dimensional lattices in York Workshop on interactions between number theory and wireless communication

publication icon
Burr A G (2014) On Linear Physical Layer Network Coding in European Signal Processing Conference, EUSIPCO 2014

publication icon
Chu Y (2019) Implementation of uplink network-coded modulation for two-hop networks in Transactions on Emerging Telecommunications Technologies

publication icon
Huang Q. (2016) The capacity of cloud-RAN: Outer bound with quantisation and constrained fronthaul load in International Symposium on Wireless Personal Multimedia Communications, WPMC

publication icon
Maryopi D (2019) On the Uplink Throughput of Zero Forcing in Cell-Free Massive MIMO With Coarse Quantization in IEEE Transactions on Vehicular Technology

publication icon
Monteiro F (2017) Special issue on network coding in EURASIP Journal on Advances in Signal Processing

publication icon
Peng T (2019) Physical Layer Network Coding in Network MIMO: A New Design for 5G and Beyond in IEEE Transactions on Communications

 
Description We have confirmed that the capacity of a cellular mobile communication system can be greatly increased by using physical layer network coding at the base stations, without any increase in the load on the backhaul network. We have also investigated Compute and Forward approaches, and compared with C-RAN and "cell-free massive MIMO" approaches with direct quantization of fronthaul, showing that there are synergies between these approaches, and potential for improved trade-off between fronthaul load and access network performance.
Exploitation Route Incorporating our methods into standards for wireless networks, and implementing them in base station equipment.
Sectors Digital/Communication/Information Technologies (including Software)

 
Description This research has informed consultancy work for Huawei on C-RAN implementation, which has led to a patent application. It has also led to further funding, which in turn may lead to further impact. Specifically a research studentship and a DASA (Defence and Security Accelerator) project, both addressing theory and applications of multi-hop infrastructureless wireless networks have been funded by Dstl, and it has led to University of York inclusion in a DCMS (Dept for Digital, Culture, Media and Sport) consortium under the Future Radio Access Networks Competition (FRANC), in collaboration with ADVA, Accelercomm, CommAgility and BT.
First Year Of Impact 2016
Sector Digital/Communication/Information Technologies (including Software)
Impact Types Economic

 
Description Advanced networking for contested environments
Amount £69,960 (GBP)
Organisation Defence Science & Technology Laboratory (DSTL) 
Sector Public
Country United Kingdom
Start 06/2021 
End 03/2022
 
Description DU-Volution
Amount £4,660,000 (GBP)
Organisation Department for Digital, Culture, Media & Sport 
Sector Public
Country United Kingdom
Start 03/2022 
End 02/2024
 
Description Dstl Research PhD
Amount £131,861 (GBP)
Funding ID 2019_ RDC_05_York _1-148733 
Organisation Defence Science & Technology Laboratory (DSTL) 
Sector Public
Country United Kingdom
Start 09/2020 
End 09/2022
 
Description Physical Layer Network Coding for Cooperative Wireless Networks
Amount £57,121 (GBP)
Funding ID 1947504 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 09/2017 
End 09/2021
 
Description SPOTLIGHT
Amount € 3,813,484 (EUR)
Funding ID 722788 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 01/2017 
End 12/2020
 
Description Fujitsu 
Organisation Fujitsu
Department Fujitsu Laboratories of Europe
Country United Kingdom 
Sector Private 
PI Contribution Development of physical layer network coding techniques for wireless systems
Collaborator Contribution Industrial advice on ongoing work; participation in project meetings
Impact Advice at meetings
Start Year 2013
 
Description HITSZ 
Organisation Harbin Institute of Technology
Department Harbin Institute of Technology Shenzhen Graduate School
Country China 
Sector Academic/University 
PI Contribution We have established a HITSZ-York Joint Lab, defined by a Memorandum of Understanding between the two partners
Collaborator Contribution We have collaborated on joint papers, submitted to IEEE journals, specifically: L. Yang, F. -C. Zheng, Y. Zhong, S. Jin and A. G. Burr, "On the SIR Meta Distribution for Cache-Enabled Wireless Networks with Random Discontinuous Transmission: Analysis and Optimization," in IEEE Transactions on Wireless Communications, doi: 10.1109/TWC.2022.3146156. plus a second which is accepted but not yet published
Impact L. Yang, F. -C. Zheng, Y. Zhong, S. Jin and A. G. Burr, "On the SIR Meta Distribution for Cache-Enabled Wireless Networks with Random Discontinuous Transmission: Analysis and Optimization," in IEEE Transactions on Wireless Communications, doi: 10.1109/TWC.2022.3146156.
Start Year 2017
 
Description Vodafone 
Organisation Vodafone
Country United Kingdom 
Sector Private 
PI Contribution Development of physical layer network coding for wireless systems
Collaborator Contribution Industrial advice
Impact None yet
Start Year 2014