EPSRC Centre for Doctoral Training in Catalysis

Lead Research Organisation: CARDIFF UNIVERSITY
Department Name: Chemistry

Abstract

The report 'Higher Degree of Concern' by the Royal Society of Chemistry highlighted the importance of effective PhD training in providing the essential skills base for UK chemistry. This is particularly true for the many industries that are reliant on catalytic skills, where entry-point recruitment is already at PhD level. However, the new-starters are usually specialists in narrow aspects of catalysis, while industry is increasingly seeking qualified postgraduates equipped with more comprehensive knowledge and understanding across the cutting edge of the whole field.

The 2011 EPSRC landscape documents acknowledged the existing strengths of UK catalysis (including the concentration of academic expertise in the south-west), but recognised the critical need for growth in this strategic and high-impact field of technology. Over the following 18 months, the universities of Bath, Bristol and Cardiff worked closely together to put in place the foundations of an alliance in catalysis, based on the distinctive but complementary areas of expertise within the three institutions. This bid will build on this alliance by creating a single training centre with unified learning through teaching and research.

Building on the best practice of existing and established postgraduate training, and benefitting from the close geographical proximity of the three universities, each intake of PhD students will form part of a single cohort. The first year of the PhD will involve taught material (building on and expanding Cardiff's established MSc in catalysis), a student-led catalyst design project, and research placements in research laboratories across all aspects of catalysis science and engineering (and across all three institutions). This broad foundation will ensure students have a thorough grounding in catalysis in the widest sense, fulfilling the industry need for recruits who can be nimble and move across traditional discipline boundaries to meet business needs. It will also mean the students are well-informed and fully engaged in the design of a longer PhD project for the next three years. This project will be the same as the more traditional PhD in terms of its scholarship and rigour, but still include wider training aspects.

A further benefit of the broader initial training is that students will be able to complete PhD projects which transcend the traditional homogeneous, heterogeneous, engineering boundaries, and include emerging areas such as photo-, electro- and bio-catalysis. This will lead to transformative research and will be encouraged by project co-supervision that cuts across the institutions and disciplines. We have identified a core of 28 supervisors across the three universities, all with established track records of excellence which, when combined, encompasses every facet of catalysis research. Furthermore, full engagement with industry has been agreed at every stage; in management, training, project design, placements and sponsorship. This will ensure technology transfer to industry when appropriate, as well as early-stage networking for students with their potential employers.

Planned Impact

Catalysis is crucially important to the UK economy, with products and services reliant on catalytic processes amounting to 21% of GDP and 15% of all exports. The UK is scientifically strong and internationally recognised in the field, but the science base is fragmented and becoming increasingly specialised. The EPSRC Centre for Doctoral Training in Catalysis will overcome these problems by acting as beacon for excellent postgraduate training in Catalysis and Reaction Engineering with a programme that will develop an advanced knowledge base of traditional and emerging catalysis disciplines, understanding of industry and global contexts, and research and professional skills tailored to the needs of the catalysis researcher.

Although the chemical sector is an immensely successful and important part of the overall UK economy, this sector is not the only end-user of catalysis. Through its training and its research portfolio the Centre will, therefore, impact on a broad range of technologies, processes and markets. It will:
(a) provide UK industry with the underpinning science and the personnel from which to develop and commercially leverage innovative future technologies for the global marketplace;
(b) allow the UK to maintain its position as a world leader in the high-technology area of catalysis and reactor engineering;
(c) consolidate and establish the UK as the centre for catalysis expertise.

Likewise, society will benefit from the human and intellectual resource that the Centre will supply. The skills and technologies that will be developed within the Centre will be highly applicable to the fields of sustainable manufacture, efficient and clean energy generation, and the protection of the environment through the clean-up of air and water - allowing some of the biggest societal challenges to be addressed.

Publications

10 25 50