EPSRC-GSK Chair in Sustainable Chemistry

Lead Research Organisation: University of Nottingham
Department Name: Sch of Chemistry


We seek support from EPSRC strategic funds to secure the appointment of a high profile academic from overseas to establish a new Sustainable Processing of Chiral Molecular Materials research group at the University of Nottingham. The group will be a key part of the University's strategy and plans to establish a Centre of Excellence for Sustainable Chemistry in collaboration with the UK based pharmaceutical company GSK. The centre will build upon the University's existing strengths in Green Chemistry, multi-disciplinary links between Chemistry and Engineering, and strong links with industry to generate a critical mass of world-leading research capacity in the emerging discipline of Sustainable Chemistry. The new research group will be housed in a unique Carbon Neutral Laboratory (CNL) and will help address key global challenges within Society and Industry including lowering carbon footprint, optimising energy usage, reducing waste and conserving precious resources such as water and metals. This work will contribute towards several of EPSRC's challenge themes. The group will be led by Professor David Amabalino (currently at CSIC-Barcelona) and will explore novel sustainable processing routes to chiral molecular materials for use in energy and medicinal applications in a multi- and inter-disciplinary collaboration across Schools in the Faculty of Science, Engineering and Medicine and Health Sciences at Nottingham, and with leading academic collaborators.

Funding is requested for 50% of the salary costs of the new appointee alongside key resources to establish and pump prime the research programme. This includes two 5 year postdoctoral fellowships together with consumables, equipment and associated costs.

Planned Impact

The new reserach group will form part of the Centre for Sustainable Chemistry, a collaborative venture with GSK. The development of new sustainable routes for processing of solid state chiral molecular materials will involve and be of direct benefit to GSK and other companies that rely on the precise preparation of drugs, dyes, and solid forms of active products. Improvement of the isolation of solids is important for both large companies and SMEs. While many SMEs offer services for synthesis of small molecules, their expertise in the preparation of solid forms of these molecules in a form that could be easily adopted for commercial apoplications is far less well developed. Thus companies will benefit directly from the outputs of this research leading to significant economic impact.

The expertise and network of internationally-leading collaborations will allow the Centre to deliver major research breakthroughs in:
* Behaviour in the solid-state of therapeutically useful molecules: the phase behaviour of chiral organic materials will be studied through processing via different routes, and improving the reliability and sustainability of solid state drug production.
* Nucleants and nucleation: the mechanism of nucleation of chiral organic compounds in solution will be probed as a function of the nature of the nucleant as well as in homogeneous nucleation conditions.
* Additive control over nucleation and growth: the role of impurities/additives on the self-assembly, nucleation and crystal growth will provide new candidates to help control the preparation of solid state molecular materials of all kinds.
* Understanding conformation and assembly in biomolecules: the precise probing of the formation of nuclei and aggregates as a function of biologically important macromolecules will permit understanding of protein assemblies of relevance in biological function and malfunction.
* Controlling aggregation of functional materials: the self-assembly routes of functional organic materials will provide new insight into the formation of hierarchical structures in these systems.

People and Society
The project will train new generations of early career scientists, postdoctoral fellows, PhD and project students equiping them with the key skills (including sustianable chemisty techniques) needed by UK industry and society. The research will address challenges of sustianable energy, scarcity of raw materials and waste and has high applicability to the Grand Challenges of Research Councils and Governmental Agencies within the UK and across the world. The research will inform stakeholders, funding agencies and policy makers especially in the areas of sustainable development, energy and new materials. We will be advocates in the strongest possible terms for the contributions that the Physical Sciences can make in these areas.

The Business Partnership Unit (BPU) (Director: Dr Trevor Farren) within the School of Chemistry, Nottingham guarantees that any generated IP will be professionally and competently exploited. Business Science Fellows within the BPU will work closely with the PI and CIs to ensure that the project will be managed to engage users and beneficiaries, and maximise impacts. All opportunities to spin-out the inventions and discoveries will be taken. Exploitation of the outputs of research during and after the lifetime of the grant will be indentified via discussion with the BPU and the University Business, Enterprise and Innovation Services (BEIS). Public engagement and outreach, including presentations and experiments at public events, in schools and colleges will be managed by the BSF with Dr Samantha Tang, a full-time Public Awareness Scientist.


10 25 50

publication icon
Rubio-Martinez M (2016) Freezing the Nonclassical Crystal Growth of a Coordination Polymer Using Controlled Dynamic Gradients. in Advanced materials (Deerfield Beach, Fla.)

publication icon
Haq S (2015) A small molecule walks along a surface between porphyrin fences that are assembled in situ. in Angewandte Chemie (International ed. in English)

publication icon
Rodríguez-San-Miguel D (2016) Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. in Chemical communications (Cambridge, England)

Description Capital equipment has been purchased in line with the JES statements, the laboratory is now established and original research has started. The group of the appointed candidate has relocated to Nottingham and is now establishing critical mass, RA appointments have been made and PhD candidates recruited in line with the project outline and associated JES activity.
Exploitation Route n/a
Sectors Chemicals