Supramolecular Nanorings for Exploring Quantum Interference
Lead Research Organisation:
University of Liverpool
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Publications

Alanazy A
(2019)
Cross-conjugation increases the conductance of meta-connected fluorenones.
in Nanoscale

Davidson RJ
(2018)
Conductance of 'bare-bones' tripodal molecular wires.
in RSC advances

Escorihuela E
(2020)
Towards the design of effective multipodal contacts for use in the construction of Langmuir-Blodgett films and molecular junctions
in Journal of Materials Chemistry C

Ferri N
(2019)
Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics
in Angewandte Chemie

Ferri N
(2019)
Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics.
in Angewandte Chemie (International ed. in English)

Herrer I
(2018)
Unconventional Single-Molecule Conductance Behavior for a New Heterocyclic Anchoring Group: Pyrazolyl
in The Journal of Physical Chemistry Letters

Herrer L
(2019)
Electrically transmissive alkyne-anchored monolayers on gold
in Nanoscale

Leary E
(2021)
Long-lived charged states of single porphyrin-tape junctions under ambient conditions.
in Nanoscale horizons

Leary E
(2018)
Bias-Driven Conductance Increase with Length in Porphyrin Tapes.
in Journal of the American Chemical Society

Leary E
(2018)
Detecting Mechanochemical Atropisomerization within an STM Break Junction.
in Journal of the American Chemical Society
Description | We have achieved enhanced understanding of charge flow through porphyrin molecular wires. This includes the unique discovery of bias voltage driven conductance increases with length in porphyrin tapes. We have detected mechanochemical atropisomerization within an STM break junction containing porphyrin molecular wires. We have extended single molecule conductance measurements to supra-molecular assemblies including porphyrin nano-rings synthesised by our collaborators. Our collaborating partner has also demonstrated quantum interference in porphyrin nanorings through EPR measurements. In addition, we have studied quantum interference effects in other conjugated systems, such as how cross-conjugation increases the conductance of meta-connected fluorenones and the unusual length dependence of the conductance in cumulene molecular wires. |
Exploitation Route | This project is providing insights into quantum interference which may be valuable in the field of nano-electronic devices and molecular electronics. |
Sectors | Chemicals,Education,Electronics |
Description | University of Madrid |
Organisation | Autonomous University of Madrid |
Country | Spain |
Sector | Academic/University |
PI Contribution | Collaboration in single molecule electronics |
Collaborator Contribution | Collaboration in single molecule electronics |
Impact | Publications in preparation. |
Start Year | 2015 |