Nanoanalysis for Advanced Materials and Healthcare

Lead Research Organisation: University of Strathclyde
Department Name: Physics


This proposal seeks funding to deliver enhanced capability for characterising and assessing advanced nanomaterials using three complementary, leading edge techniques: Field-emission microprobe (EPMA), combined Raman/multiphoton confocal microscope (Raman/MP) and small angle X-ray scattering (SAXS). This suite of equipment will be used to generate a step-change in nanoanalysis capability for a multi-disciplinary team of researchers who together form a key part of Strathclyde's new Technology and Innovation Centre (TIC). The equipment will support an extensive research portfolio with an emphasis on functional materials and healthcare applications. The requested equipment suite will enable Strathclyde and other UK academics to partner with other world-leading groups having complementary analytical facilities, thereby creating an international collaborative network of non-duplicated facilities for trans-national access. Moreover the equipment will generate new research opportunities in advanced materials science in partnership with the National Physical Laboratory, UK industry and academia.

Planned Impact

The creation and exploitation of new technologies for biological and nanoscale material characterization often underpins developments that have a far-reaching impact at multiple levels of society including governmental, academic, the commercial sector, as well as the wider public.

In areas such as developing new nanomaterials for biomedical diagnostic and therapeutic applications, there remains a huge gulf between concept and translation into clinical applications. This equipment will enable studies to be performed with increasing sensitivity, speed and complexity for cell and tissue imaging and time-based measurements. As well as promoting fundamental understanding on how to better diagnose and track disease progress and along side more effective drug and vaccine delivery, this equipment will help address industrial and societal concerns on nanoparticle safety and potential environmental impact.

At a commercial level, potential beneficiaries in the shorter term include companies who are interested in the development and testing of a wide array of different chemical and bionanomaterials for sensing and medical applications. Instrumentation companies who are keen to integrate new technologies such as light sources, detection and imaging equipment for biomedical applications are also potential beneficiaries. During both the instrument facility construction and its subsequent use we will work with our UK-based partners in these areas to demonstrate new measurement and application possibilities.

In the longer term, the ability to demonstrate more effective healthcare technologies has tremendous potential for both society and the generation of new intellectual property. For example, the discovery and rational design of new and more effective materials for medical treatment can be made improved by speeding up the cycle between design and understanding the response at the cellular and tissue level. This will be promoted by utilising less invasive methods capable of faster and more accurate disease monitoring.


10 25 50
Description New state-of-the art equipment purchased, installed and operational (mid-2017)
Exploitation Route Access to equipment for nanoanalysis (electron microprobe, small angle X-ray scattering and multi-photon Raman microscopy)
Sectors Electronics,Energy,Healthcare,Manufacturing, including Industrial Biotechology,Pharmaceuticals and Medical Biotechnology

Description New equipment installed and running. Range of events promoting equipment use have been hosted, for example we hosted a UK user day for about 20 others using similar equipment in the UK (crossing many research fields and companies)
Sector Aerospace, Defence and Marine,Chemicals,Electronics,Environment,Healthcare,Manufacturing, including Industrial Biotechology,Pharmaceuticals and Medical Biotechnology
Impact Types Economic

Title Data for: "A systematic comparison of polar and semipolar Si-doped AlGaN alloys with high AlN content" 
Description This data is the result of cathodoluminescence hyperspectral imaging and wavelength-dispersive X-ray spectroscopy measurements carried out on a set of Si-doped Al?Ga1??N epilayers, grown at the Tyndall Institute using different AlGaN crystal orientations and Si incorporation. Further analysis and interpretation of this data is presented in the associated journal article, and figure numbers referred to in the data correspond to those used in this paper: "A systematic comparison of polar and semipolar Si-doped AlGaN alloys with high AlN content" by L. Spasevski et al (2020), Journal of Physics D: Applied Physics. DOI: 10.1088/1361-6463/abbc95 
Type Of Material Database/Collection of data 
Year Produced 2020 
Provided To Others? Yes