A Hybrid PV-Battery Unit Optimised for LV Grids Using GaN Transistors

Lead Research Organisation: Loughborough University
Department Name: Wolfson Sch of Mech, Elec & Manufac Eng

Abstract

Under their "Gone Green" deployment scenario, National Grid forecast that energy generated from photovoltaics (PV) in the UK is expected to rise from 2 GW to 15 GW over the next 20 years. This is being driven by the UK's legal obligations
around the installation of renewables and cutting greenhouse gases, the rising cost of energy and concerns around the security of supply - the so-called energy "trilemma". Power Electronic converters are a key enabling technology for PV and a range of other low-carbon technologies (LCTs). However the use of LCTs has resulted in problems for the Distribution Network Operators (DNOs) in terms of supply voltage distortion and over-voltages, which threatens to limit or delay the uptake of these technologies. The aim of this project is to mitigate this threat by exploiting the benefits of new Gallium
Nitride (GaN) power module, which will initially be developed for use in a hybrid PV-battery unit for residential applications, but will have much broader application in LV grid-connected equipment (e.g. electric vehicle, charging & micro-CHP). It is anticipated that the deployment of these units would lead to an increase in the maximum allowable installed capacity on the network and will be much smaller, lighter and have lower cost than existing Silicon based units.

Planned Impact

This project is serving to bridge the difficult gaps between the disparate elements of a complex supply chain running all the way from a semiconductor device manufacturer to a power distribution company. The project seeks to investigate the techno-economic viability of a hybrid PV-battery energy storage unit using new GaN transistors, which will provide advantages for both the energy consumer and the DNO. This unit would form a key component of the so-called smart grid and contribute toward improving the efficiency, capacity and flexibility of the local distribution network. The economic
benefits of such a smartgrid have been recently documented in a report by Ernst and Young (April 2012) for SmartGrid GB, a cross-industry stakeholder group, which informs both DECC and Ofgem. In this report the forecast savings to the UK are around £19 billion if a smartgrid solution was employed over conventional investment. In addition an average of 8000-9000 jobs will be generated up to 2030, and exports of £5 billion are possible by deploying smartgrid technology. The combined value to secondary industries such as electric vehicles, distributed generation, electro-heat and renewables is significant. For example the gross value added for electric vehicles alone could be £17-52 billion between 2030-2050. This project directly feeds into this aim, by assessing the feasibility of a new GaN power electronic module, hybrid PV-battery converter and control, which significantly contribute to such a system becoming a reality.

At a Social level as well as the creation of jobs through the design, manufacture, installation and sales of this equipment and its associated supply chain, the use of this technology will result in a more robust electricity supply through the use of energy storage and improved power quality. In addition, as well as reducing consumer's electricity bills through increased use of distributed generation, the cost of the inverter equipment is likely to be lower due to smaller size and weight and ease of installation. The outcomes of this project should therefore help toward alleviating so-called fuel poverty, by reducing the cost of electricity.

At an environmental level this project is a key enabler towards the introduction of local, renewable power generation as well as increasing the efficiency of the local residential power network. As such, by reducing the consumption of energy through grid-connected fossil-fuel power stations it would play a key role in future plans for the reduction of greenhouse emissions.

Publications

10 25 50
 
Description The use of GaN transistors does not offer a benefit for use in residential PV, but the hardware developed during the project would be ideal for electrical vehicle/aerospace applications.
Exploitation Route They are being used to develop new products by the industrial partners in the project
Sectors Electronics,Energy

 
Description To develop a new product by one of the industrial collaborators in the project
First Year Of Impact 2018
Sector Energy
Impact Types Economic

 
Title Software algorithm to calculate power converter ratings 
Description MATLAB algorithm developed to calculate the optimum power rating of a PV/battery converter for residential properties. 
Type Of Material Improvements to research infrastructure 
Year Produced 2018 
Provided To Others? Yes  
Impact Conference publication - IET Power Electronics Machines and Drives 2018 
 
Title 2 kW GaN based converter prototype 
Description A 2 kW power electronic converter operating at 2 MHZ switching frequency for residential PV applications 
Type Of Technology New/Improved Technique/Technology 
Year Produced 2018 
Impact Assisted Innovate UK partner (Navarino Electrical Systems) develop a hardware system design, that is to be used as a company "produce" 
 
Description Presented at Rushlight conference 2017 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Industry/Business
Results and Impact Attended and presented along with Innovate UK project partner at Rushlight.
Year(s) Of Engagement Activity 2017