System Builders - Device Assembly from Nanoporous Materials Developed from Current Platform Grant (EP/J014974/1)

Lead Research Organisation: Queen Mary University of London
Department Name: School of Engineering & Materials Scienc

Abstract

Separations demand more than half of all the capital and operating costs associated with processing industries. This is because separation is often achieved by boiling liquids to make them turn into a gas, or by diluting systems with large volumes of solvents and carrying out differential adsorption in a chromatography systems. These approaches are resource intensive and complex. Membranes might be used to simplify these problems. If a mixture of materials is pressed by pressure against a membrane, and the membrane is permeable to only some of the materials, then we can separate the
molecules that pass through the membrane from those that do not. This uses much less solvents and energy, and is less
complex than alternatives.

Not surprisingly, people have been interested in using membranes to separate and concentrate molecules for some time. A major success is in the area of desalination, where membranes are used to separate fresh water out of seawater. However, membranes are not generally used to separate organic mixtures, like crude oil, into its components, because there were no membranes stable in organic liquids. This has changed recently - research at Imperial College, supported by the platform grant "Molecular Builders: Constructing Nanoporous Materials" has developed membranes that are stable in most solvents, and offer high throughput rates and selectivity between molecules. These have been commercialised through an Imperial spin out company, Membrane Extraction technology, who began production on a small scale. This generated interest from large companies, who saw the potential for widespread use, and MET was acquired by Evonik Industries on 1 March 2010. Evonik MET made a substantial investment in a large scale manufacturing facility in West London, and the UK has become a world leader in the development and manufacture of advanced Organic Solvent Nanofiltration (OSN) membranes.

Now, we need to build on this initial success. We have developed innovative new materials with controlled micro-porous structure that lead to outstanding performance. But we have not yet developed the skills and knowledge to put these into devices and to use these devices in molecular separations that would be applicable in commerce and industry.

For the platform grant renewal period, we will revolutionise the device fabrication and application platforms. We will use the techniques we have created to manufacture composite materials and incorporate these into micro-devices such as columns, monoliths and modules. We will use the these devices to deal with separation problems that current membranes cannot reach, such as synthesis of pharmaceuticals in continuously operating reactors, production of DNA and RNA for therapeutic needs, and the separation of gases.

To succeed in this ambitious goal we will need to train our research team in a diverse range of techniques, most of which we do not have currently. We will do this by working with other research teams at Imperial College and around the world who are experts in the techniques we want to learn, and by hiring new post-docs into our team from these groups, who will speed skills transfer. The synthesis of the new techniques, and their combination with our existing skills, will lead to world beating new science and engineering, and new products manufactured in the UK.

Planned Impact

The economic benefits of the research proposed are the business around manufacturing and selling new materials that arise from the research, and the economic benefit of the applications of these materials.

The membranes research group at Imperial College has a strong demonstrated record in the commercialisation of membranes derived from its research. Evonik MET, based in West London, is the only dedicated manufacturing facility for organic solvent nanofiltration membranes in the world. The fundamental processes they used were developed at Imperial College with EPSRC research funding. MicroTech Ceramics is working to create a new range of monoliths for environmental control, and the basic research was performed with EPSRC funding.

If the application for renewal is successful, it will generate a revolutionary range of new devices with potential in separations, and other applications. The most likely interest in these materials will come from companies who manufacture structured polymer and ceramic materials, including membrane manufacturers, and these companies may license the technology developed. Alternatively, there may be the opportunity for creation of new companies to develop and market these new materials, where this makes more economic sense, or where risk hinders larger companies from getting involved. In either case, economic benefits will derive, including investment in capital equipment and creation of skilled jobs, from the manufacture of these new materials.

The second economic impact will come through the application of these devices to industry. We envisage that they will be used for filtration in organic solvents, and separation of molecules in mixtures of solutes. Membranes are generally one of the lowest energy forms of separating components of liquids, and so the end users will obtain economic benefits from energy savings and reduction in complexity of their processes. These end users are likely to be industrial companies operating in the full range of chemical sciences businesses, from oil and gas extraction and refining to the food, chemical and pharmaceutical industries. It is important that the materials we create can be manufactured, and we have deep experience with the scale up to commercial use of developmental materials. It is instructive to note that sales of membranes for desalination and nanofiltration are around £2 billion, and so these materials can feed into major market opportunities.

These economic benefits have parallel social benefits. The manufacture of advanced membrane materials creates high level and knowledge intensive employment, and improves the national accounts through exports achieved. The application of the new materials in industry will reduce energy consumption, and so CO2 production; and the purification of water is a key societal need.
 
Description We have found that we can adjust the pore sizes, and so selectivities of membranes, by using nanoporous materials in the fabrication of the thin film separating layers. We have developed membranes with tunable selectivity responding to solvent change.
Exploitation Route Membranes developed could be applied to variety of industries.
Sectors Chemicals,Manufacturing, including Industrial Biotechology,Pharmaceuticals and Medical Biotechnology