SOFTWARE DEFINED MATERIALS FOR DYNAMIC CONTROL OF ELECTROMAGNETIC WAVES (ANIMATE)

Lead Research Organisation: Queen Mary, University of London
Department Name: Sch of Electronic Eng & Computer Science

Abstract

Inspired by recent scientific breakthroughs in the area of transformation optics (TO) and metamaterials, QMUL in collaboration with its partners and UK industries have demonstrated several novel antenna solutions which potentially offer new composite flat lens antenna, surface wave and metasurface devices that could be embedded into the skin of vehicles without compromising aerodynamic performance, representing a major leap forward for future technologies related to the Internet of Things (IoT), CubeSat and Space Communications. The potential of the underlying design approaches have much wider applicability in arguably all technical challenges as addressed above. For example, we extended the TO technique to design novel beam steerable antennas . Instead of moving or tilting the feed/reflctor, we employ an alternative way to manipulate the reflected emission by varying the permittivity of dielectrics derived from TO. This method has the merits of maintaining a flat profile, being capable of beam-steering and frequeny agility. Combining with appropriate feed designs, the system can be effectively be used as either a single radiator or an array fulfilling massive MIMO functions. In a broad sense, dielectric substrates with spatially varying permittivity and/or permeability can be regarded as a "magic black box", whose properties are programmable according to required functional requirements. In the proposed ANIMATE project, we refer to this magic black box as "software defined materials", since they demonstrate far-reaching capabilities well beyond conventional antennas and arguably in all devices and systems that exploit electromagnetic spectra.

To enable this step change, a suite of novel advanced materials must be studied and developed, especially, active materials and structures with low loss, high tunability but low DC power dissipation are desirable. In addition, a robust biasing network is needed so that material building blocks can be individually controlled. In spite of the longstanding quest and intensive research over the years, this subject area still remains insufficiently explored. With ongoing advances in modelling and manufacturing tools, it is now possible to revisit some fundamental limits imposed on conventional materials and antenna designs. The vision of ANIMATE is therefore to unlock contributions and expertise from multiple disciplines, to develop a core programme of research on software defined materials, which will enable dynamic control of electromagnetic waves for applications in sensing, communications and computation.

The ultimate objective of ANIMATE is to remove the traditional boundary between the designs of antennas and RF/microwave electronics as well as materials and devices, so that a generic material platform can be developed that is programmable and flexible for multifunctional applications integrating communication, sensing and computation. Specifically, in this project, we will:

1. Establish a holistic approach of software-defined materials for communication, sensing and computation, by building novel integrated and adaptive antenna technologies.
2. Integrate wireless sensor networks into the design of computer interface and control units for tunable materials to demonstrate and validate the wholly new concept of "networked materials" at subwavelength scales.
3. Exploit challenging applications of proposed antenna and material technologies with our core industrial partners at all stages of development: prototyping, manufacturing, toolbox validation, platform integration and testing.
4. Research novel active and tunable materials and investigate fundamental limits of relevant materials to industrial challenges.
5. Develop simulation tools that span from materials, device and process modeling with intricate complexities that open up the design domain significantly and enable the production of optimal structures with improved performance.

Planned Impact

ANIMATE will be the catalyst around which our industrial partners can ensure UK industry maintains its leading position in the marketplace and capitalises on the industrial strategy initiative, facilitating retention and growth of highly skilled jobs and supporting the UK's knowledge economy. Our strategic partnership with QinetiQ (QQ) will enable the design, development and integration of novel electromagnetic devices and structures and reshape the future of the UK manufacturing and electronics industry. Combining world-leading researchers with unique facilities to provide technical assurance, test and evaluation and training services, underpinned by long-term partnerships, this project has the potential to reinforce the UK's competitiveness in the field of RF and microwave devices at both commercial and academic levels. Impact will be demonstrated by transitioning the technology into new products to create revenue across the wider UK supply chain, and QQ is committed to this exploitation through its current and future customers, who will be engaged from the inception of the programme. This is demonstrable through the establishment of the QQ Advanced Services and Products division, whose mission is to incubate novel technologies and mature to product through partnership with with UK Primes (BAE, Thales, Huawei), SMEs (Plextek, Flann Microwave, Satellite Applications Catapult) and academia.

Given its potential for new technologies, we expect there to be significant press interest, and we will work with the press offices to ensure wide dissemination. We will ensure that the technicalities are translated into an accessible format for use in media including podcasts, conferences and webpages. QMUL has a 'Communications and Outreach Committee', who coordinate talks at technical institutions, colleges and schools and in the local community. Other partners undertake similar activities in their areas. We will also publish details of the project on our web sites. QMUL has a long history of dissemination in the popular media, including newspapers and the BBC. In addition, our project partner(s) have excellent relations with bodies that can assist in the wider dissemination of information including relevant KTNs and trade associations. We will encourage the investigators to engage with the public, schools and the stakeholder by having interviews, round table discussions and exhibitions in science festivals in order to raise the status of the field in the UK and encourage the next generation of young scientists with the skills to carry forward and diversify the myriad of economic and social opportunities promised by software defined materials. We will recommend that all researchers demonstrate awareness of and commitment to the principles of Responsible Innovation. We have allocated some funding to engage with ORBIT to promote creativity and opportunities for science and innovation that are socially desirable and undertaken in the public interest.

The Research Fellows and PhD students will benefit through this highly interdisciplinary project and multi-institutional approach, both in terms of specific research skills but also in team working and project management and will be expected to play an active role in interacting with stakeholders. We will work harder to increase the talented pool of women in engineering and attract them to work with us on this exciting research.
 
Description Inspired by recent scientific breakthroughs in the area of transformation optics (TO) and metamaterials, QMUL in collaboration with its partners and UK industries have demonstrated several novel antenna solutions which potentially offer new composite flat lens antenna, surface wave and metasurface devices that could be embedded into the skin of vehicles without compromising aerodynamic performance, representing a major leap forward for future technologies related to the Internet of Things (IoT), CubeSat and Space Communications. The potential of the underlying design approaches have much wider applicability in arguably all technical challenges as addressed above. For example, we extended the TO technique to design novel beam steerable antennas . Instead of moving or tilting the feed/reflctor, we employ an alternative way to manipulate the reflected emission by varying the permittivity of dielectrics derived from TO. This method has the merits of maintaining a flat profile, being capable of beam-steering and frequeny agility. Combining with appropriate feed designs, the system can be effectively be used as either a single radiator or an array fulfilling massive MIMO functions. In a broad sense, dielectric substrates with spatially varying permittivity and/or permeability can be regarded as a "magic black box", whose properties are programmable according to required functional requirements. In the proposed ANIMATE project, we refer to this magic black box as "software defined materials", since they demonstrate far-reaching capabilities well beyond conventional antennas and arguably in all devices and systems that exploit electromagnetic spectra. To enable this step change, a suite of novel advanced materials must be studied and developed, especially, active materials and structures with low loss, high tunability but low DC power dissipation are desirable. In addition, a robust biasing network is needed so that material building blocks can be individually controlled. In spite of the longstanding quest and intensive research over the years, this subject area still remains insufficiently explored. With ongoing advances in modelling and manufacturing tools, it is now possible to revisit some fundamental limits imposed on conventional materials and antenna designs. The vision of ANIMATE is therefore to unlock contributions and expertise from multiple disciplines, to develop a core programme of research on software defined materials, which will enable dynamic control of electromagnetic waves for applications in sensing, communications and computation.
The ultimate objective of ANIMATE is to remove the traditional boundary between the designs of antennas and RF/microwave electronics as well as materials and devices, so that a generic material platform can be developed that is programmable and flexible for multifunctional applications integrating communication, sensing and computation.
Specifically, in this project, we will:
1. Establish a holistic approach of software-defined materials for communication, sensing and computation, by building novel integrated and adaptive antenna technologies.
2. Integrate wireless sensor networks into the design of computer interface and control units for tunable materials to demonstrate and validate the wholly new concept of "networked materials" at subwavelength scales.
3. Exploit challenging applications of proposed antenna and material technologies with our core industrial partners at all stages of development: prototyping, manufacturing, toolbox validation, platform integration and testing.
4. Research novel active and tunable materials and investigate fundamental limits of relevant materials to industrial challenges.
5. Develop simulation tools that span from materials, device and process modeling with intricate complexities that open up the design domain significantly and enable the production of optimal structures with improved performance.
Exploitation Route A strategic partnership with Thales, Dstl and Qinetiq has been established with cash support generated for this project. Results are taken up by industrial collaborators.
Sectors Aerospace, Defence and Marine,Digital/Communication/Information Technologies (including Software),Electronics

URL https://animate-research.com
 
Description ANIMATE will be the catalyst around which our industrial partners can ensure UK industry maintains its leading position in the marketplace and capitalises on the industrial strategy initiative, facilitating retention and growth of highly skilled jobs and supporting the UK's knowledge economy. Our strategic partnership with QinetiQ (QQ) will enable the design, development and integration of novel electromagnetic devices and structures and reshape the future of the UK manufacturing and electronics industry. Combining world-leading researchers with unique facilities to provide technical assurance, test and evaluation and training services, underpinned by long-term partnerships, this project has the potential to reinforce the UK's competitiveness in the field of RF and microwave devices at both commercial and academic levels. Impact will be demonstrated by transitioning the technology into new products to create revenue across the wider UK supply chain, and QQ is committed to this exploitation through its current and future customers, who will be engaged from the inception of the programme. This is demonstrable through the establishment of the QQ Advanced Services and Products division, whose mission is to incubate novel technologies and mature to product through partnership with with UK Primes (BAE, Thales, Huawei), SMEs (Plextek, Flann Microwave, Satellite Applications Catapult) and academia. Given its potential for new technologies, we expect there to be significant press interest, and we will work with the press offices to ensure wide dissemination. We will ensure that the technicalities are translated into an accessible format for use in media including podcasts, conferences and webpages. QMUL has a 'Communications and Outreach Committee', who coordinate talks at technical institutions, colleges and schools and in the local community. Other partners undertake similar activities in their areas. We will also publish details of the project on our web sites. QMUL has a long history of dissemination in the popular media, including newspapers and the BBC. In addition, our project partner(s) have excellent relations with bodies that can assist in the wider dissemination of information including relevant KTNs and trade associations. We will encourage the investigators to engage with the public, schools and the stakeholder by having interviews, round table discussions and exhibitions in science festivals in order to raise the status of the field in the UK and encourage the next generation of young scientists with the skills to carry forward and diversify the myriad of economic and social opportunities promised by software defined materials. We will recommend that all researchers demonstrate awareness of and commitment to the principles of Responsible Innovation. We have allocated some funding to engage with ORBIT to promote creativity and opportunities for science and innovation that are socially desirable and undertaken in the public interest. The Research Fellows and PhD students will benefit through this highly interdisciplinary project and multi-institutional approach, both in terms of specific research skills but also in team working and project management and will be expected to play an active role in interacting with stakeholders. We will work harder to increase the talented pool of women in engineering and attract them to work with us on this exciting research.
First Year Of Impact 2019
Sector Aerospace, Defence and Marine,Digital/Communication/Information Technologies (including Software),Electronics
Impact Types Cultural,Economic

 
Description (GrapheneCore2) - Graphene Flagship Core Project 2
Amount € 88,000,000 (EUR)
Funding ID 785219 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 04/2018 
End 03/2020
 
Description Dstl PhD studentship on software defined materials
Amount £120,000 (GBP)
Organisation Defence Science & Technology Laboratory (DSTL) 
Sector Public
Country United Kingdom
Start 08/2019 
End 07/2022
 
Description Frequency Agile Antennas
Amount £300,000 (GBP)
Organisation Defence Science & Technology Laboratory (DSTL) 
Sector Public
Country United Kingdom
Start 10/2019 
End 09/2022
 
Description Multi-functional sensor designs based on graphene
Amount £100,000 (GBP)
Organisation Defence Science & Technology Laboratory (DSTL) 
Sector Public
Country United Kingdom
Start 10/2019 
End 09/2020
 
Description SOFTWARE DEFINED MATERIALS FOR DYNAMIC CONTROL OF ELECTROMAGENTIC WAVES (ANIMATE)
Amount £1,631,777 (GBP)
Funding ID EP/R035393/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 09/2018 
End 08/2022
 
Description THz Antenna Fabrication and Measurement Facilities (TERRA)
Amount £1,232,783 (GBP)
Funding ID EP/S010009/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 12/2018 
End 11/2021
 
Description AGC Contract on Optical Transparent Antennas for future wireless communications 
Organisation AGC Chemicals Europe
Country United Kingdom 
Sector Private 
PI Contribution 3D printed antennas have been co-developed with AGC for future communications in driverless automotives
Collaborator Contribution AGC has been providing system requirements, system integration and demonstration.
Impact A patent application is being prepared and a potential spinout will come out of this collaboration
Start Year 2020
 
Description SOFTWARE DEFINED MATERIALS FOR DYNAMIC CONTROL OF ELECTROMAGNETIC WAVES (ANIMATE) 
Organisation Qinetiq
Department QinetiQ (Farnborough)
Country United Kingdom 
Sector Private 
PI Contribution The ultimate objective of ANIMATE is to remove the traditional boundary between the designs of antennas and RF/microwave electronics as well as materials and devices, so that a generic material platform can be developed that is programmable and flexible for multifunctional applications integrating communication, sensing and computation. Specifically, in this project, we will: 1. Establish a holistic approach of software-defined materials for communication, sensing and computation, by building novel integrated and adaptive antenna technologies. 2. Integrate wireless sensor networks into the design of computer interface and control units for tunable materials to demonstrate and validate the wholly new concept of "networked materials" at subwavelength scales. 3. Exploit challenging applications of proposed antenna and material technologies with our core industrial partners at all stages of development: prototyping, manufacturing, toolbox validation, platform integration and testing. 4. Research novel active and tunable materials and investigate fundamental limits of relevant materials to industrial challenges. 5. Develop simulation tools that span from materials, device and process modeling with intricate complexities that open up the design domain significantly and enable the production of optimal structures with improved performance.
Collaborator Contribution Our industrial partners are a vital part of our impact strategy, keeping our focus on what they need for innovative devices and systems to commercialise. We have recently established a strategic collaboration with Dr Sajad Haq (SH) and his team at QinetiQ (QQ), who have committed strong financial support and co-created the ANIMATE project. Other industrial collaborators include Thales UK, Huawei, BAE Systems, Satellite Application Catapult and UK SMEs including Flann Microwaves and Plextek, et al. We have a long history of collaborations with universities (Oxford, Sheffield, Exeter and Loughborough), some of whom (SYMETA) have provided letters of support for this application.
Impact A news release from Qinetiq can be found from https://www.qinetiq.com/News/2018/06/Queen-Mary-Collaboration As the project just started, there has been no publishable outputs and outcomes.
Start Year 2018
 
Description SOFTWARE DEFINED MATERIALS FOR DYNAMIC CONTROL OF ELECTROMAGNETIC WAVES (ANIMATE) 
Organisation Thales Group
Department Thales UK Limited
Country United Kingdom 
Sector Private 
PI Contribution The ultimate objective of ANIMATE is to remove the traditional boundary between the designs of antennas and RF/microwave electronics as well as materials and devices, so that a generic material platform can be developed that is programmable and flexible for multifunctional applications integrating communication, sensing and computation. Specifically, in this project, we will: 1. Establish a holistic approach of software-defined materials for communication, sensing and computation, by building novel integrated and adaptive antenna technologies. 2. Integrate wireless sensor networks into the design of computer interface and control units for tunable materials to demonstrate and validate the wholly new concept of "networked materials" at subwavelength scales. 3. Exploit challenging applications of proposed antenna and material technologies with our core industrial partners at all stages of development: prototyping, manufacturing, toolbox validation, platform integration and testing. 4. Research novel active and tunable materials and investigate fundamental limits of relevant materials to industrial challenges. 5. Develop simulation tools that span from materials, device and process modeling with intricate complexities that open up the design domain significantly and enable the production of optimal structures with improved performance.
Collaborator Contribution Our industrial partners are a vital part of our impact strategy, keeping our focus on what they need for innovative devices and systems to commercialise. We have recently established a strategic collaboration with Dr Sajad Haq (SH) and his team at QinetiQ (QQ), who have committed strong financial support and co-created the ANIMATE project. Other industrial collaborators include Thales UK, Huawei, BAE Systems, Satellite Application Catapult and UK SMEs including Flann Microwaves and Plextek, et al. We have a long history of collaborations with universities (Oxford, Sheffield, Exeter and Loughborough), some of whom (SYMETA) have provided letters of support for this application.
Impact A news release from Qinetiq can be found from https://www.qinetiq.com/News/2018/06/Queen-Mary-Collaboration As the project just started, there has been no publishable outputs and outcomes.
Start Year 2018
 
Description Software Defined Materials for Antenna Applications 
Organisation Defence Science & Technology Laboratory (DSTL)
Country United Kingdom 
Sector Public 
PI Contribution This project is aimed to develop a new paradigm for software defined materials with wireless sensor network at subwavelength scales, in industrial contexts, which can be programmable for current and evolving standards, security requirements and multiple functionalities. It arises from several industrial challenges relevant to the development of future wireless communication, radar and sensor systems, which require frequency agile, broadband and beam-steerable antenna solutions. It is related to topic areas including "materials for antennas" and "novel electromagnetic materials".
Collaborator Contribution The ultimate objective of this PhD project is to remove the traditional boundary between the designs of antennas and RF/microwave electronics as well as materials and devices, so that a generic material platform can be developed that is programmable and flexible for multifunctional applications integrating communication, sensing and computation.
Impact The project is about to start and PhD recruitment is in the process.
Start Year 2019