Made Smarter Innovation - Digital Medicines Manufacturing Research Centre
Lead Research Organisation:
University of Strathclyde
Department Name: Inst of Pharmacy and Biomedical Sci
Abstract
Powered by data, Industrial Digital Technologies (IDTs) such as artificial intelligence and autonomous robots, can be used to improve all aspects of manufacturing and supply of products along supply chains to the customer. Many companies are embracing these technologies but uptake within the pharmaceutical sector has not been as rapid. The Medicines Made Smarter Data Centre (MMSDC) looks to address the key challenges which are slowing digitalisation, and adoption of IDTs that can transform processes to deliver medicines tailored to patient needs.
Work will be carried out across five integrated platforms designed by academic and industrial researcher teams. These are: 1) The Data Platform, 2) Autonomous MicroScale Manufacturing Platform, 3) Digital Quality Control Platform, 4) Adaptive Digital Supply Platform, and 5) The MMSDC Network & Skills Platform.
Platform 1 addresses one of the sector's core digitalisation challenges - a lack of large data sets and ways to access such data. The MMSDC data platform will store and analyse data from across the MMSDC project, making it accessible, searchable and reusable for the medicines manufacturing community. New approaches for ensuring consistently high-quality data, such as good practice guides and standards, will be developed alongside data science activities which will identify what the most important data are and how best to use them with IDTs in practice.
Platform 2 will accelerate development of medicine products and manufacturing processes by creating agile, small-scale production facilities that rapidly generate large data sets and drive research. Robotic technologies will be assembled to create a unique small-scale medicine manufacturing and testing system to select drug formulations and processes to produce stable products with the desired in-vitro performance. Integrating several IDTs will accelerate drug product manufacture, significantly reducing experiments and dramatically reducing development time, raw materials and associated costs.
Platform 3 focusses on the digitalisation of Quality Control (QC) aspects of medicines development which is important for ensuring a medicine's compliance with regulatory standards and patient safety requirements. Currently, QC checks are carried out after a process has been completed possibly spotting problems after they have occurred. This approach is inefficient, fragmented, costly (>20% of total production costs) and time consuming. The digital QC platform will research how to transform QC by utilising rich data from IDTs to confirm in real time product and process compliance.
Platform 4 will generate new understanding on future supply chain needs of medicines to support adoption of adaptive digital supply chains for patient-centric supply. IDTs make smaller scale, autonomous factory concepts viable that support more flexible and distributed manufacture and supply. Supply flexibility and agility extends to scale, product variety, and shorter lead-times (from months to days) offering a responsive patient-centric or rapid replenishment operating model. Finally, technology developments closer to the patient, such as diagnostics provide visibility on patient specific needs.
Platform 5 will establish the MMSDC Network & Skills Platform. This Network will lead engagement and collaboration across key stakeholder groups involved in medicines manufacturing and investments. The Network brings together the IDT-using community and other relevant academic and industrial groups to share developments across pharmaceuticals and broader digital manufacturing sectors ensuring cross-sector diffusion of MMSDC research. Existing strategic networks will support MMSDC and act as gateways for IDT dissemination and uptake. The lack of appropriate skills in the workforce has been highlighted as a key barrier to IDT adoption. An MMSDC priority is to identify skills needs and with partners develop and deliver training to over 100 users
Work will be carried out across five integrated platforms designed by academic and industrial researcher teams. These are: 1) The Data Platform, 2) Autonomous MicroScale Manufacturing Platform, 3) Digital Quality Control Platform, 4) Adaptive Digital Supply Platform, and 5) The MMSDC Network & Skills Platform.
Platform 1 addresses one of the sector's core digitalisation challenges - a lack of large data sets and ways to access such data. The MMSDC data platform will store and analyse data from across the MMSDC project, making it accessible, searchable and reusable for the medicines manufacturing community. New approaches for ensuring consistently high-quality data, such as good practice guides and standards, will be developed alongside data science activities which will identify what the most important data are and how best to use them with IDTs in practice.
Platform 2 will accelerate development of medicine products and manufacturing processes by creating agile, small-scale production facilities that rapidly generate large data sets and drive research. Robotic technologies will be assembled to create a unique small-scale medicine manufacturing and testing system to select drug formulations and processes to produce stable products with the desired in-vitro performance. Integrating several IDTs will accelerate drug product manufacture, significantly reducing experiments and dramatically reducing development time, raw materials and associated costs.
Platform 3 focusses on the digitalisation of Quality Control (QC) aspects of medicines development which is important for ensuring a medicine's compliance with regulatory standards and patient safety requirements. Currently, QC checks are carried out after a process has been completed possibly spotting problems after they have occurred. This approach is inefficient, fragmented, costly (>20% of total production costs) and time consuming. The digital QC platform will research how to transform QC by utilising rich data from IDTs to confirm in real time product and process compliance.
Platform 4 will generate new understanding on future supply chain needs of medicines to support adoption of adaptive digital supply chains for patient-centric supply. IDTs make smaller scale, autonomous factory concepts viable that support more flexible and distributed manufacture and supply. Supply flexibility and agility extends to scale, product variety, and shorter lead-times (from months to days) offering a responsive patient-centric or rapid replenishment operating model. Finally, technology developments closer to the patient, such as diagnostics provide visibility on patient specific needs.
Platform 5 will establish the MMSDC Network & Skills Platform. This Network will lead engagement and collaboration across key stakeholder groups involved in medicines manufacturing and investments. The Network brings together the IDT-using community and other relevant academic and industrial groups to share developments across pharmaceuticals and broader digital manufacturing sectors ensuring cross-sector diffusion of MMSDC research. Existing strategic networks will support MMSDC and act as gateways for IDT dissemination and uptake. The lack of appropriate skills in the workforce has been highlighted as a key barrier to IDT adoption. An MMSDC priority is to identify skills needs and with partners develop and deliver training to over 100 users
Organisations
- University of Strathclyde, United Kingdom (Lead Research Organisation)
- MG2 S.r.l. (Project Partner)
- KUKA Robotics UK Limited (Project Partner)
- Knowledge Transfer Network KTN (Project Partner)
- National Physical Laboratory NPL, United Kingdom (Project Partner)
- Centre for Process Innovation Limited, Redcar, United Kingdom (Project Partner)
- Smith and Nephew, United Kingdom (Project Partner)
- Dietrich Engineering Consultants S.A. (Project Partner)
- Perceptive Engineering Limited, United Kingdom (Project Partner)
- Altair Engineering Ltd, United Kingdom (Project Partner)
- CPACT (Project Partner)
- AstraZeneca plc, United Kingdom (Project Partner)
- NVIDIA Limited (Project Partner)
- EPSRC Future Manufact Hub Target Health (Project Partner)
- Fette GMBH (Project Partner)
- MEDELPHARM (Project Partner)
- Bdd Pharma Ltd (Project Partner)
- UCB Pharma, Belgium (Project Partner)
- GSK (UK) (Project Partner)
- Cambridge Crystallographic Data Centre, United Kingdom (Project Partner)
- Malvern Panalytical Ltd (Project Partner)
- Chiesi Pharmaceuticals (Project Partner)
- Henry Royce Institute (Project Partner)
- Connected Everything Network+ (II) (Project Partner)
- Blaze Metrics, LLC. (Project Partner)
- Process Systems Enterprises Ltd, United Kingdom (Project Partner)
- Calderdale & Huddersfield NHS Foun Trust (Project Partner)
- TUV SUD (UK) (Project Partner)