UKRI-India Future Networks Initiative
Lead Research Organisation:
University of Southampton
Department Name: Sch of Electronics and Computer Sci
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
People |
ORCID iD |
Lajos Hanzo (Principal Investigator) |
Publications

Hoang P
(2022)
Learning Unbalanced and Sparse Low-Order Tensors
in IEEE Transactions on Signal Processing

Hoang T
(2023)
Secrecy-Rate Optimization of Double RIS-Aided Space-Ground Networks
in IEEE Internet of Things Journal

Hoang T
(2024)
Physical Layer Authentication and Security Design in the Machine Learning Era
in IEEE Communications Surveys & Tutorials

Hoang T
(2022)
Deep Learning Aided Physical-Layer Security: The Security Versus Reliability Trade-Off
in IEEE Transactions on Cognitive Communications and Networking

Hoang T
(2022)
RIS-Aided AANETs: Security Maximization Relying on Unsupervised Projection-Based Neural Networks
in IEEE Transactions on Vehicular Technology

Hou T
(2022)
MIMO Assisted Networks Relying on Intelligent Reflective Surfaces: A Stochastic Geometry Based Analysis
in IEEE Transactions on Vehicular Technology

Hou X
(2023)
Environment-Aware AUV Trajectory Design and Resource Management for Multi-Tier Underwater Computing
in IEEE Journal on Selected Areas in Communications

Jafri M
(2024)
Asynchronous Distributed Coordinated Hybrid Precoding in Multi-Cell mmWave Wireless Networks
in IEEE Open Journal of Vehicular Technology

Jafri M
(2022)
Robust Distributed Hybrid Beamforming in Coordinated Multi-User Multi-Cell mmWave MIMO Systems Relying on Imperfect CSI
in IEEE Transactions on Communications
Description | This project substantially contributed towards the evolution of next-generation wireless networks. A few of the key findings are: 1/ The designer can strike a compelling trade-off amongst the entire suite of performance metrics of next-generation networks based on our findings; 2/ The space-air-ground integrated networking (SAGIN) concept is capable of eliminating the coverage holes of existing networks; 3/ New perfectly secure quantum networking concepts were developed; |
Exploitation Route | These findings will gradually influence both academic and industrial research; |
Sectors | Aerospace Defence and Marine Digital/Communication/Information Technologies (including Software) Education Electronics |
URL | https://www-mobile.ecs.soton.ac.uk/sites/www-mobile.ecs.soton.ac.uk/files/merged-comsoc-course-reading.pdf |
Description | These results have found their way to industry, since Prof. Rob Maunder started the spinoff company AccelerCom; |
First Year Of Impact | 2023 |
Sector | Aerospace, Defence and Marine,Communities and Social Services/Policy,Electronics |
Impact Types | Economic |
Description | UKRI - FNI |
Organisation | University of Essex |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Essex University - Prof. Gerard Parr UCL - Prof. Steve Hailes Surrey U - Prof. Rahim Tafazolli Indian Institute of Science - Prof. KVS Hari Indian Institute of Technology - Numerous Colleagues BT - Nader Azarmi |
Collaborator Contribution | As an attractive enabling technology for next-generation wireless communications, network slicing supports diverse customized services in the global space-air-ground integrated network (SAGIN) with diverse resource constraints. In this paper, we dynamically consider three typical classes of radio access network (RAN) slices, namely high-throughput slices, low-delay slices and wide-coverage slices, under the same underlying physical SAGIN. The throughput, the service delay and the coverage area of these three classes of RAN slices are jointly optimized in a non-scalar form by considering the distinct channel features and service advantages of the terrestrial, aerial and satellite components of SAGINs. A joint central and distributed multi-agent deep deterministic policy gradient (CDMADDPG) algorithm is proposed for solving the above problem to obtain the Pareto optimal solutions. The algorithm first determines the optimal virtual unmanned aerial vehicle (vUAV) positions and the inter-slice sub-channel and power sharing by relying on a centralized unit. Then it optimizes the intra-slice sub-channel and power allocation, and the virtual base station (vBS)/vUAV/virtual low earth orbit (vLEO) satellite deployment in support of three classes of slices by three separate distributed units. Simulation results verify that the proposed method approaches the Pareto-optimal exploitation of multiple RAN slices, and outperforms the benchmarkers. |
Impact | 1/ We surveyed the entire field of open radio access networks and composed a technical report; 2/ Organized a workshop in India with the objective of building a long-term consortium for an India - UK project; 3/ Currently we are organizing a similar one in the UK; 4/ We published numerous research studies; |
Start Year | 2021 |