UKRI-India Future Networks Initiative
Lead Research Organisation:
University of Southampton
Department Name: Sch of Electronics and Computer Sci
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
People |
ORCID iD |
Lajos Hanzo (Principal Investigator) |
Publications

Jafri M
(2023)
Cooperative Hybrid Transmit Beamforming in Cell-Free mmWave MIMO Networks
in IEEE Transactions on Vehicular Technology


Joda R
(2023)
The Internet of Senses: Building on Semantic Communications and Edge Intelligence
in IEEE Network

Kumar P
(2024)
Decision Fusion in Centralized and Distributed Multiuser Millimeter-Wave Massive MIMO-OFDM Sensor Networks
in IEEE Open Journal of the Communications Society

Lei L
(2022)
Deep Reinforcement Learning Aided Platoon Control Relying on V2X Information
in IEEE Transactions on Vehicular Technology

Li B
(2024)
Heterogeneous Graph Neural Network for Power Allocation in Multicarrier-Division Duplex Cell-Free Massive MIMO Systems
in IEEE Transactions on Wireless Communications

Li K
(2023)
Reconfigurable Intelligent Surface Aided Position and Orientation Estimation Based on Joint Beamforming With Limited Feedback
in IEEE Open Journal of the Communications Society

Li Q
(2024)
Energy-Efficient Reconfigurable Holographic Surfaces Operating in the Presence of Realistic Hardware Impairments
in IEEE Transactions on Communications
Description | This project substantially contributed towards the evolution of next-generation wireless networks. A few of the key findings are: 1/ The designer can strike a compelling trade-off amongst the entire suite of performance metrics of next-generation networks based on our findings; 2/ The space-air-ground integrated networking (SAGIN) concept is capable of eliminating the coverage holes of existing networks; 3/ New perfectly secure quantum networking concepts were developed; |
Exploitation Route | These findings will gradually influence both academic and industrial research; |
Sectors | Aerospace Defence and Marine Digital/Communication/Information Technologies (including Software) Education Electronics |
URL | https://www-mobile.ecs.soton.ac.uk/sites/www-mobile.ecs.soton.ac.uk/files/merged-comsoc-course-reading.pdf |
Description | These results have found their way to industry, since Prof. Rob Maunder started the spinoff company AccelerCom; |
First Year Of Impact | 2023 |
Sector | Aerospace, Defence and Marine,Communities and Social Services/Policy,Electronics |
Impact Types | Economic |
Description | UKRI - FNI |
Organisation | University of Essex |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Essex University - Prof. Gerard Parr UCL - Prof. Steve Hailes Surrey U - Prof. Rahim Tafazolli Indian Institute of Science - Prof. KVS Hari Indian Institute of Technology - Numerous Colleagues BT - Nader Azarmi |
Collaborator Contribution | As an attractive enabling technology for next-generation wireless communications, network slicing supports diverse customized services in the global space-air-ground integrated network (SAGIN) with diverse resource constraints. In this paper, we dynamically consider three typical classes of radio access network (RAN) slices, namely high-throughput slices, low-delay slices and wide-coverage slices, under the same underlying physical SAGIN. The throughput, the service delay and the coverage area of these three classes of RAN slices are jointly optimized in a non-scalar form by considering the distinct channel features and service advantages of the terrestrial, aerial and satellite components of SAGINs. A joint central and distributed multi-agent deep deterministic policy gradient (CDMADDPG) algorithm is proposed for solving the above problem to obtain the Pareto optimal solutions. The algorithm first determines the optimal virtual unmanned aerial vehicle (vUAV) positions and the inter-slice sub-channel and power sharing by relying on a centralized unit. Then it optimizes the intra-slice sub-channel and power allocation, and the virtual base station (vBS)/vUAV/virtual low earth orbit (vLEO) satellite deployment in support of three classes of slices by three separate distributed units. Simulation results verify that the proposed method approaches the Pareto-optimal exploitation of multiple RAN slices, and outperforms the benchmarkers. |
Impact | 1/ We surveyed the entire field of open radio access networks and composed a technical report; 2/ Organized a workshop in India with the objective of building a long-term consortium for an India - UK project; 3/ Currently we are organizing a similar one in the UK; 4/ We published numerous research studies; |
Start Year | 2021 |