Supergen Network Plus in Artificial Intelligence for Renewable Energy (SuperAIRE)
Lead Research Organisation:
University of Warwick
Department Name: Sch of Engineering
Abstract
SuperAIRE aims to establish a world-leading network connecting academia, industries, and policymakers across the spectrum of artificial intelligence (AI) for renewable energy (RE), particularly wind, solar, marine, and bio energy. This includes generation, storage, transmission/distribution and demand side management. These represent most of the research areas in the UKRI's Energy and Decarbonisation theme. With SuperAIRE, we aim to create the conditions in which AI for RE can be promoted much more rapidly than at present to boost the development and deployment of RE. We will not only exploit the transformative power of AI in different RE subsectors but also address common challenges and optimise performance across the RE ecosystem. Supported by a broad partnership currently with 30 partners across industry (23), leading R&I organisations (5), and policymakers (2), we will incubate a Supergen AI+RE research community seizing the opportunity to enhance the UK's role as a global leader in the intelligent and digital transformation of the RE sector.
Despite the recent growth in all subsectors, progress in essential technologies supporting the lifecycles of RE systems lags behind. AI offers strategic advantages in overcoming the limitations of traditional methods which struggle to process the increasing complexity and big data in RE systems. It will enable decision-supporting digitalisation, operational efficiency optimisation, cost-effective integration, multi-scenario adaptability, and technological cross-applicability. Though there are some current critical masses in AI for RE, the communities are facing many challenges, e.g., the fragmented nature of the landscape, subsystem isolation, and limited scope. SuperAIRE will address these challenges by enabling shared learning on common research challenges in different RE subsectors through promoting novel generic approaches complemented with refinements tailored to subsector's unique needs; forging a holistic view to facilitate system-wide AI applications; and fostering comprehensive solutions that go beyond single-task focuses to exploit the full potential of AI in enhancing the RE ecosystem.
SuperAIRE will carry out diverse activities to engage with stakeholders, facilitate knowledge exchanges, catalyse community coherence, identify cross-sector opportunities, address skill gaps, support nurturing high-skill professionals with multidisciplinary expertise, and disseminate project outcomes. These activities include four key challenge workshops, bimonthly seminars, flexible funds, outreach activities, an international conference, etc. SuperAIRE will support early career researchers (ECRs) from both academia and industry via a dedicated ECR Forum, a mentoring scheme, secondment opportunities, and ECR grants. We will emphasise Equality, Diversity and Inclusion in all activities. Based on the current critical mass and emerging gaps and opportunities, we have also proposed six pre-defined research themes (RTs) to steer our Network+ activities, especially in guiding discussions, identifying challenges and opportunities, streamlining research coordination efforts, shaping a research landscape report, and developing a whitepaper. This includes RT1 Robust and trustworthy AI; RT2 Prediction and forecasting across scales; RT3 AI-powered digital twins; RT4 Intelligent control and management; RT5 Smart integration; and RT6 Intelligent robotics and autonomous systems in resource assessments, operations, and maintenance.
Bolstered by strong support from project partners, we will consolidate core achievements and pursue the establishment of a new Supergen Hub in AI for RE at the end of SuperAIRE. Through these endeavours, we aim to enhance the efficiency, resilience, and affordability of RE, ultimately transforming the RE sector and addressing environmental challenges via AI.
Despite the recent growth in all subsectors, progress in essential technologies supporting the lifecycles of RE systems lags behind. AI offers strategic advantages in overcoming the limitations of traditional methods which struggle to process the increasing complexity and big data in RE systems. It will enable decision-supporting digitalisation, operational efficiency optimisation, cost-effective integration, multi-scenario adaptability, and technological cross-applicability. Though there are some current critical masses in AI for RE, the communities are facing many challenges, e.g., the fragmented nature of the landscape, subsystem isolation, and limited scope. SuperAIRE will address these challenges by enabling shared learning on common research challenges in different RE subsectors through promoting novel generic approaches complemented with refinements tailored to subsector's unique needs; forging a holistic view to facilitate system-wide AI applications; and fostering comprehensive solutions that go beyond single-task focuses to exploit the full potential of AI in enhancing the RE ecosystem.
SuperAIRE will carry out diverse activities to engage with stakeholders, facilitate knowledge exchanges, catalyse community coherence, identify cross-sector opportunities, address skill gaps, support nurturing high-skill professionals with multidisciplinary expertise, and disseminate project outcomes. These activities include four key challenge workshops, bimonthly seminars, flexible funds, outreach activities, an international conference, etc. SuperAIRE will support early career researchers (ECRs) from both academia and industry via a dedicated ECR Forum, a mentoring scheme, secondment opportunities, and ECR grants. We will emphasise Equality, Diversity and Inclusion in all activities. Based on the current critical mass and emerging gaps and opportunities, we have also proposed six pre-defined research themes (RTs) to steer our Network+ activities, especially in guiding discussions, identifying challenges and opportunities, streamlining research coordination efforts, shaping a research landscape report, and developing a whitepaper. This includes RT1 Robust and trustworthy AI; RT2 Prediction and forecasting across scales; RT3 AI-powered digital twins; RT4 Intelligent control and management; RT5 Smart integration; and RT6 Intelligent robotics and autonomous systems in resource assessments, operations, and maintenance.
Bolstered by strong support from project partners, we will consolidate core achievements and pursue the establishment of a new Supergen Hub in AI for RE at the end of SuperAIRE. Through these endeavours, we aim to enhance the efficiency, resilience, and affordability of RE, ultimately transforming the RE sector and addressing environmental challenges via AI.
Organisations
- University of Warwick (Lead Research Organisation)
- SP Energy Networks (Project Partner)
- DNV GL (Project Partner)
- University of Plymouth (Project Partner)
- Schlumberger Cambridge Research Limited (Project Partner)
- embotech AG (Project Partner)
- Nortech Management Ltd (Project Partner)
- Vital Energi (Project Partner)
- Schneider Electric Limited (Project Partner)
- The Alan Turing Institute (Project Partner)
- Vestas Wind Systems A/S (Project Partner)
- Dept for Energy Security & Net Zero (Project Partner)
- Five AI Limited (Project Partner)
- National Grid ESO (Project Partner)
- Ove Arup & Partners Ltd (Project Partner)
- Mott Macdonald (Project Partner)
- Supergen Energy Networks Hub (Project Partner)
- Global Wind Energy Council (Project Partner)
- OPAL-RT Europe SAS (Project Partner)
- Meta (Previously Facebook) (Project Partner)
- Bays Consulting Ltd (Project Partner)
- OFFSHORE RENEWABLE ENERGY CATAPULT (Project Partner)
- GE Power (Project Partner)
- The MathsWorks, Inc. (Project Partner)
- EDRMedeso AS (Project Partner)
- PA Consulting Group (Project Partner)
- BP (UK) (Project Partner)
- ETAP Automation Ltd (Project Partner)