The Flexible Fuel Cell

Lead Research Organisation: Imperial College London
Department Name: Chemistry

Abstract

Fuel Cells have a problem.The current geometrical design of common fuel cells is not fault tolerant and requires all components to operate in an almost ideal manner. This is because each power generating unit in a fuel cell stack is connected in series: the weakest link in the fuel cell chain dictates performance and reliability. Put simply: if a fuel cell is like a string of batteries all connected in a line, then that fuel cell can only operate as well as the worst performing of all of the batteries. If one of the batteries fails, then the entire fuel cell fails. This means that each battery (or membrane electrode assembly in the fuel cell case) must be produced to very high standards. We need to make sure that none of them fail during the operational life of the fuel cell stack. This makes the fuel cell electrodes very difficult to produce and contributes significantly to their cost. But what if we could design a fuel cell stack so that we can switch out bad units and allow the fuel cell to continue operation?Such a fuel cell would then show fault tolerance and resilience to adverse environmental and internal influences. Indeed it might even be possible to nurse poorly performing electrodes, and coax them back to good health (or at least stop them from failing entirely). In a nut-shell, that is the purpose of this project - to radically redesign how fuel cells operate. This will allow us to have much greater control of the fuel cell operation compared to the configuration used almost exclusively everywhere else. An interesting by-product of the new design is that we can integrate the power control electronics directly with the fuel cell. This means that we can achieve significant space savings and a decrease in the cost of the controlling electronics. In order to produce this new type of fuel cell, we require a very tight coupling between both Chemistry and Chemical Engineering aspects of the work. The development of new types of electrodes is guided by some subtle chemistry associated with the production of 'through-membrane' connectors. The integration of those electrodes into a stack requires a radically different type of housing. Such work must be carefully guided by modelling and simulation, and the results need to be fed back to optimise the electrodes. Thus we require close cooperation between both chemists and engineers in order to ensure the success of the project. The research team will be assisted by four collaborating external partners. These collaborators will assist with the development of the fuel cell system and represent a balanced team representing the development chain: a technology transfer company (Imperial Innovations Ltd) who will manage the commercialisation of this work out of Imperial; an applications developer (Applied intellectual Capital) who will define the market and establish precise operational requirements; a materials supplier / developer (SPC Technologies Ltd) who will supply sample materials for use as flow fields and sealant material and contribute expertise on the processing of porous plastics; and a potential end user (The Defence Science and Technology Laboratory) who will test the robust lightweight design against requirements for infantry missions.

Publications

10 25 50

publication icon
Kalyvas C (2015) The Flexi Planar Fuel Cell

publication icon
Obeisun O (2014) Advanced Diagnostics Applied to a Self-Breathing Fuel Cell in ECS Transactions

publication icon
Rubio-Garcia J (2018) Hydrogen/manganese hybrid redox flow battery in Journal of Physics: Energy

publication icon
Stockford C (2015) H2FC SUPERGEN: An overview of the Hydrogen and Fuel Cell research across the UK in International Journal of Hydrogen Energy

 
Description We have developed a new type of fuel cell which can be manufactured using inexpensive technology. This fuel cell offers the possibility to radically reduce the cost of fuel cell systems.

The technology has been spun out into a company
Exploitation Route Company has been formed based on the technology developed in this project - see url above
Sectors Electronics,Energy

URL https://www.brambleenergy.com
 
Description The findings have been used to publish papers and give talks at conferences. We also have been successful in attracting further funding for the approach from our respective university technology transfer offices and the Carbon Trust. We also have been successful in obtaining funding from Innovate UK. As a result of furthermore, we have been able to spinout a company to take the approaches developed in this project further. That company is called Bramble Energy and Professor Kucernak is the CSO of that company and Professor Brett is Director of Innovation
First Year Of Impact 2013
Sector Energy,Environment
Impact Types Economic

 
Description Carbon Trust Polymer fuel cell challenge
Amount £54,000 (GBP)
Organisation Carbon Trust 
Sector Charity/Non Profit
Country United Kingdom
Start 01/2012 
End 11/2014
 
Description Development of a demonstrator for EP/G041792-1
Amount £49,965 (GBP)
Funding ID P46013 
Organisation Imperial Innovations 
Sector Private
Country United Kingdom
Start 01/2013 
End 02/2014
 
Description Development of a demonstrator for EP/G041792-1
Amount £49,965 (GBP)
Funding ID P46013 
Organisation Imperial Innovations 
Sector Private
Country United Kingdom
Start 01/2013 
End 07/2014
 
Description Fuel Cell Manufacturing & the Supply Chain
Amount £232,000 (GBP)
Funding ID P51890_CHIS 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 10/2014 
End 09/2016
 
Description Pathways to Impact - Development of a demonstrator for EP/G041792-1
Amount £74,357 (GBP)
Funding ID P46012 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2013 
End 07/2014
 
Description Symbiotic
Amount € 3,000,000 (EUR)
Funding ID http://symbiotic-project.eu/project/ 
Organisation European Commission H2020 
Sector Public
Country Belgium
Start 01/2016 
End 11/2018
 
Description Bramble Energy 
Organisation Bramble Energy Ltd
Country United Kingdom 
Sector Private 
PI Contribution We have contributed knowledge to better understand the operation of the fuel cells developed by Bramble
Collaborator Contribution Bramble Energy is a spinout and has contributed materials for testing within my research group
Impact Three patents
Start Year 2016
 
Description Collaboration with Hydrogen and Fuel Cell Supergen 
Organisation Hydrogen and Fuel Cell Supergen
Country United Kingdom 
Sector Charity/Non Profit 
PI Contribution H2FC is the hydrogen and fuel cell supergen. We have presented results at H2FC conferences and as Kucernak is a theme leader the results have been used to set the direction of future research
Collaborator Contribution Allow research to be seen by wider audience.
Impact Presentation of results at H2FC conferences
Start Year 2017
 
Description Flexible fuel cell collaboration 
Organisation Photomechanical servides
Country United Kingdom 
Sector Private 
PI Contribution None
Collaborator Contribution Photomechanical services has provided training and knowledge transfer in the area of printed circuitboard production
Impact Better deposition of corrosion protection layers in fuel cells
Start Year 2009
 
Title CORROSION PROTECTION COATING 
Description An electrically conductive composite coating comprises a layer of an electrically conductive coating material (101) comprising a carbon-based material and an azole corrosion inhibitor; and a layer of tin or a tin alloy (102), such as tin-antimony (Sn-6wt%Sb) alloy. The coating material may include an organic binder. The coating may be used to protect a component (100) in an electrochemical device such as a fuel cell assembly, a battery, a redox flow battery, an electrolyser or a supercapacitor. The coating shows no significant sign of corrosion after 9 days in accelerated long term corrosion tests in an aggressive environment. 
IP Reference WO2017212295 
Protection Patent application published
Year Protection Granted 2017
Licensed Yes
Impact Patent licensed to Bramble energy
 
Title ELECTRICALLY CONDUCTIVE COMPOSITE CORROSION PROTECTION COATING 
Description An electrically conductive composite coating comprises a layer of an electrically conductive coating material (101) comprising a carbon-based material and an azole corrosion inhibitor; and a layer of tin or a tin alloy (102), such as tin-antimony (Sn-6wt%Sb) alloy. The coating material may include an organic binder. The coating may be used to protect a component (100) in an electrochemical device such as a fuel cell assembly, a battery, a redox flow battery, an electrolyser or a supercapacitor. The coating shows no significant sign of corrosion after 9 days in accelerated long term corrosion tests in an aggressive environment. 
IP Reference CA3026384 
Protection Patent application published
Year Protection Granted 2017
Licensed Yes
Impact Patent licensed to fuel cell company, Bramble Energy
 
Title FUEL CELL 
Description A fuel cell assembly is disclosed comprising a fuel cell electrode component and a reactant gas flow component ink bonded thereto. In one aspect direct bonding of a gas diffusion layer with a flow field is achieved allowing a simplified structural configuration. In another aspect improved component printing techniques reduce corrosion effects. In a further aspect flow fields are described providing reactant channels extending in both the horizontal and vertical directions, i.e. providing three dimensional flow. In a further aspect an improved wicking material allows wicking away and reactant humidification. In a further aspect improved mechanical fastenings and connectors are provided. In a further aspect improved humidification approaches are described. Further improved aspects are additionally disclosed. 
IP Reference WO2013164639 
Protection Patent granted
Year Protection Granted 2013
Licensed Yes
Impact Patent has been licenced to the company "Bramble Energy"
 
Title FUEL CELL COMPRISING AT LEAST TWO STACKED PRINTED CIRCUIT BOARDS WITH A PLURALITY OF INTERCONNECTED FUEL CELL UNITS 
Description A fuel cell comprising at least two stacked fuel cell boards (22) which each comprise a membrane of substantially gas impervious electrolyte material and at least two electrode pairs wherein the anode and cathode of each said electrode pair are arranged on respective faces of said membrane. An electrode of each pair of electrodes is connected to an electrode of an adjacent pair of electrodes by a through-membrane connection (13) or by an external connection on a Printed Circuit Board, comprising an electrically conductive region of said electrolyte material. A method for forming the through-membrane electrical connections in the electrolyte membrane is also disclosed. 
IP Reference CA2828460 
Protection Patent application published
Year Protection Granted 2012
Licensed Yes
Impact Fuel Cell company now using this patent to make fuel cells
 
Title FUEL CELL COMPRISING AT LEAST TWO STACKED PRINTED CIRCUIT BOARDS WITH A PLURALITY OF INTERCONNECTED FUEL CELL UNITS 
Description A fuel cell comprising at least two stacked fuel cell boards (22) which each comprise a membrane of substantially gas impervious electrolyte material and at least two electrode pairs wherein the anode and cathode of each said electrode pair are arranged on respective faces of said membrane. An electrode of each pair of electrodes is connected to an electrode of an adjacent pair of electrodes by a through-membrane connection (13) or by an external connection on a Printed Circuit Board, comprising an electrically conductive region of said electrolyte material. A method for forming the through-membrane electrical connections in the electrolyte membrane is also disclosed. 
IP Reference US2018233765 
Protection Patent application published
Year Protection Granted 2018
Licensed Yes
Impact Patent licensed to Bramble Energy Ltd
 
Title FUEL CELL COMPRISING AT LEAST TWO STACKED PRINTED CIRCUIT BOARDS WITH A PLURALITY OF INTERCONNECTED FUEL CELL UNITS 
Description A fuel cell comprising at least two stacked fuel cell boards (22) which each comprise a membrane of substantially gas impervious electrolyte material and at least two electrode pairs wherein the anode and cathode of each said electrode pair are arranged on respective faces of said membrane. An electrode of each pair of electrodes is connected to an electrode of an adjacent pair of electrodes by a through-membrane connection (13) or by an external connection on a Printed Circuit Board, comprising an electrically conductive region of said electrolyte material. A method for forming the through-membrane electrical connections in the electrolyte membrane is also disclosed. 
IP Reference WO2012117035 
Protection Patent application published
Year Protection Granted 2012
Licensed Yes
Impact Patent being used by company to manufacture systems
 
Title FUEL CELL COMPRISING AT LEAST TWO STACKED PRINTED CIRCUIT BOARDS WITH A PLURALITY OF INTERCONNECTED FUEL CELL UNITS 
Description A fuel cell comprising at least two stacked fuel cell boards (22) which each comprise a membrane of substantially gas impervious electrolyte material and at least two electrode pairs wherein the anode and cathode of each said electrode pair are arranged on respective faces of said membrane. An electrode of each pair of electrodes is connected to an electrode of an adjacent pair of electrodes by a through-membrane connection (13) or by an external connection on a Printed Circuit Board, comprising an electrically conductive region of said electrolyte material. A method for forming the through-membrane electrical connections in the electrolyte membrane is also disclosed. 
IP Reference WO2012117035 
Protection Patent granted
Year Protection Granted 2012
Licensed Yes
Impact Patent has been licenced to fuel cell company "Bramble Energy" Patent granted in US 24.04.2018
 
Title Fuel Cell Comprising at Least Two Stacked Printed Circuit Boards with a Plurality of Interconnected Fuel Cell Units 
Description A fuel cell comprising at least two stacked fuel cell boards (22) which each comprise a membrane of substantially gas impervious electrolyte material and at least two electrode pairs wherein the anode and cathode of each said electrode pair are arranged on respective faces of said membrane. An electrode of each pair of electrodes is connected to an electrode of an adjacent pair of electrodes by a through-membrane connection (13) or by an external connection on a Printed Circuit Board, comprising an electrically conductive region of said electrolyte material. A method for forming the through-membrane electrical connections in the electrolyte membrane is also disclosed. 
IP Reference US2014154604 
Protection Patent application published
Year Protection Granted 2014
Licensed Yes
Impact used by company to produce fuel cells
 
Title Fuel cell 
Description A fuel cell assembly is disclosed comprising a fuel cell electrode component and a reactant gas flow component ink bonded thereto. In one aspect direct bonding of a gas diffusion layer with a flow field is achieved allowing a simplified structural configuration. In another aspect improved component printing techniques reduce corrosion effects. In a further aspect flow fields are described providing reactant channels extending in both the horizontal and vertical directions, i.e. providing three dimensional flow. In a further aspect an improved wicking material allows wicking away and reactant humidification. In a further aspect improved mechanical fastenings and connectors are provided. In a further aspect improved humidification approaches are described. Further improved aspects are additionally disclosed. 
IP Reference CN104488125 
Protection Patent application published
Year Protection Granted 2015
Licensed Yes
Impact Patent being used by company to manufacture systems
 
Title Fuel cell comprising at least two stacked printed circuit boards with a plurality of interconnected fuel cell units 
Description A fuel cell comprising at least two stacked fuel cell boards (22) which each comprise a membrane of substantially gas impervious electrolyte material and at least two electrode pairs wherein the anode and cathode of each said electrode pair are arranged on respective faces of said membrane. An electrode of each pair of electrodes is connected to an electrode of an adjacent pair of electrodes by a through-membrane connection (13) or by an external connection on a printed circuit board, comprising an electrically conductive region of said electrolyte material. A method for forming the through-membrane electrical connections in the electrolyte membrane is also disclosed. 
IP Reference CN103620842 
Protection Patent application published
Year Protection Granted 2014
Licensed Yes
Impact patent used to produce fuel cells by company
 
Company Name Bramble Energy Ltd 
Description Bramble Energy makes low cost fuel cells 
Year Established 2016 
Impact Early stage at the moment.
 
Description Chief Scientific Officer of Bramble Energy Ltd 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Asked to be CSO of Bramble energy - spinout company formed due to this research. Attend monthly board meeting
Year(s) Of Engagement Activity 2016,2017,2018,2019
 
Description Stand demonstrating technology at "The great exhibition rd festival", 2019 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact Stand at the "Great Exhibition Rd festival in June 2019
Year(s) Of Engagement Activity 2019
URL https://www.greatexhibitionroadfestival.co.uk/whats-on/