Developing an experimental functional map of polymer electrolyte fuel cell operation

Lead Research Organisation: Imperial College London
Department Name: Chemistry

Abstract

It is not possible to understand the way that a fuel cell operates without understanding how reactants, products, heat and electrochemical potential varies within that fuel cell. A consequence of this is that in order to obtain the best performance out of a fuel cell we cannot treat it like a simple electrical device with a positive and negative terminal: we need to be able to understand what is happening at different points within that fuel cell. Put simply, the purpose of this project is to develop a new way to image what is happening within an operating fuel cell. That is, to develop a way in which we can see how well the different parts of the fuel cell is operating - whether they are operating well, or starved of reactants, or undergoing damaging processes which will limit the longevity of the system.In this programme we intend to build on previous work at NPL, Imperial and UCL to develop a world-class instrument to allow us to study what is happening within an operating fuel cell. We will utilise a specially instrumented fuel cell which will allow us to monitor several very important parameters in real time. In this way we can monitor how the fuel cell operates under the different extreme conditions imposed on it during both normal and abnormal operating conditions. Examples of such extreme conditions occur when the fuel cell is started up, or shut down or when the fuel cell is pushed to perform at the limits of its performance (as might be expected during an overtaking manoeuvre if the fuel cell were powering a vehicle). Results of this research will be utilised to improve the design of the fuel cell.The hardware will be designed and built at Imperial College, and tested at both Imperial and NPL. A bipolar plate rapid prototyping facility will be built at UCL which will allow us to experiment with different flow-field geometries in order to achieve as even as possible distribution of the parameters being measured with the fuel cell mapping hardware. Modelling will be performed at UCL in order to test improvements to the performance of the cells brought about by using different flow-field architecturesWe have engaged with two major UK fuel cell companies, Johnson Matthey and Intelligent Energy, who are interested in utilising the instrumentation and results of this work.

Publications

10 25 50
publication icon
Brett DJ (2010) What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance. in Chemphyschem : a European journal of chemical physics and physical chemistry

publication icon
Obeisun O (2014) Advanced Diagnostics Applied to a Self-Breathing Fuel Cell in ECS Transactions

publication icon
Kalyvas C (2015) The Flexi Planar Fuel Cell

publication icon
Stockford C (2015) H2FC SUPERGEN: An overview of the Hydrogen and Fuel Cell research across the UK in International Journal of Hydrogen Energy

 
Description We have developed new equipment and techniques which allow us to measure and probe the effects of starting up and shutting down fuel cells and measure the amount of degradation that occurs during this process. This is important in allowing us to accurately measure degradation rates of fuel cells operated under non-uniform conditions
Exploitation Route Our new equipment is being used to study more resilient catalysts and catalyst supports which resist these extreme events. It also allows us to better understand the conditions under which the degradation processes are accelerated.
Sectors Chemicals,Energy

 
Description Our findings have been used by our research partners (Johnson Matthey and NPL) to better understand fuel cell operation. The results have also been used to further isolate interesting aspects which require further information and which are the topic of additional research proposals. As a result of this work a number of members of the team are also part of the NPL industrial board.
First Year Of Impact 2014
Sector Chemicals,Energy
Impact Types Economic

 
Description Collaboration with CarpeFC Canadian Fuel Cell Network 
Organisation Catalysis Research for Polymer Electrolyte Fuel Cells Network (CaRPE-FC)
Country Canada 
Sector Charity/Non Profit 
PI Contribution I contribute the the CarpeFC canadian fuel cell network as an International advisor. This affords me access to Canadian researchers
Collaborator Contribution Sharing of knowledge and techniques
Impact Yearly trip to Canada to discuss Canadian fuel cell research
Start Year 2013
 
Description Collaboration with Hydrogen and Fuel Cell Supergen 
Organisation Hydrogen and Fuel Cell Supergen
Country United Kingdom 
Sector Charity/Non Profit 
PI Contribution H2FC is the hydrogen and fuel cell supergen. We have presented results at H2FC conferences and as Kucernak is a theme leader the results have been used to set the direction of future research
Collaborator Contribution Allow research to be seen by wider audience.
Impact Presentation of results at H2FC conferences
Start Year 2010
 
Title Fuel cell 
Description A fuel cell assembly is disclosed comprising a fuel cell electrode component and a reactant gas flow component ink bonded thereto. In one aspect direct bonding of a gas diffusion layer with a flow field is achieved allowing a simplified structural configuration. In another aspect improved component printing techniques reduce corrosion effects. In a further aspect flow fields are described providing reactant channels extending in both the horizontal and vertical directions, i.e. providing three dimensional flow. In a further aspect an improved wicking material allows wicking away and reactant humidification. In a further aspect improved mechanical fastenings and connectors are provided. In a further aspect improved humidification approaches are described. Further improved aspects are additionally disclosed. 
IP Reference CN104488125 
Protection Patent application published
Year Protection Granted 2015
Licensed Yes
Impact Patent being used by company to manufacture systems
 
Description Renewable Fuel Generation and Energy Storage 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact Renewable Fuel Generation and Energy Storage Symposium
2nd November 2018
Molecular Sciences Research Hub, White City Campus, Imperial College London
PROGRAMME
09:00 - 09:30 Arrival and light breakfast
09:30 - 09:40 Introductory remarks: Dr. Andreas Kafizas
MATERIALS Chair: Dr. Franky Bedoya
09:40 - 10:10 Life beyond titania: new materials for solar fuel generation
Prof. Aron Walsh, Department of Materials
10:10 - 10:40 MOF-based composites as bifunctional materials for CO2 capture and photoconversion
Dr. Camille Petit, Department of Chemical Engineering
10:40 - 11:00 Coffee & Poster session
11:00 - 11:30 Photoelectrocatalytic properties of atomically thin transition metal dichalcogenides
Dr. Cecilia Mattevi, Department of Materials
11:30 - 12:00 Lead-acid batteries recycling for the 21st Century
Dr. David Payne, Department of Materials
12:00 - 13:00 Lunch & Poster session
TECHNIQUES AND FUNDAMENTALS Chair: Dr. Anna Hankin
13:00 - 13:30 Measuring the intrinsic catalytic performance of catalysts for fuel cells and electrolysers
Prof. Anthony Kucernak, Department of Chemistry
13:30 - 14:00 Towards a parameter-free theory for electrochemical phenomena at the nanoscale
Dr. Clotilde Cucinotta, Department of Chemistry
14:00 - 14:30 Transient spectroscopic studies of approaches to artificial photosynthesis
Prof. James Durrant, Department of Chemistry
14:30 - 15:00 In-situ ultrafast methods for solar fuels: Can we push efficiencies?
Dr. Ernest Pastor, Department of Chemistry
15:00 - 15:20 Coffee & Poster session
DEVICES AND IMPLEMENTATION Chair: Dr. Ernest Pastor
15:20 - 15:50 Upscaling battery technology: From material science to pack engineering
Dr. Billy Wu, Dyson School of Design Engineering
15:50 - 16:20 Electrochemical synthesis of fuels and valuable chemicals: from fundamental catalysis studies to real devices
Dr. Ifan Stephens, Department of Materials
16:20 - 16:50 (Photo-)electrochemical reactors for energy conversion and storage
Prof. Geoff Kelsall, Department of Chemical Engineering
16:50 - 17:20 Renewable gas from offshore wind and offshore electrolysers
Dr. Malte Jansen, Centre for Environmental Policy
PANEL DISUSSION Chair: Prof. Geoff Kelsall
17:20 - 18:00 Question for the panellists: Learning from the presentations today, what disruptive technologies and collaborative projects would you like to see at ICL?
Panellists: Prof. James Durrant (Chemistry), Prof. Richard Templer (Chemistry & Grantham Institute), Dr. Judith Cherni (Centre for Environmental Policy) and Dr. Sam Coper (Dyson School of Design Engineering).
18:00 - 18:10 Closing remarks and prize-giving: Dr. Andreas Kafizas
18:10 - Late Wine and mingling
Year(s) Of Engagement Activity 2018