Materials World Network: Tailoring Electrocatalytic Materials by Controlled Surface Exsolution

Lead Research Organisation: University of St Andrews
Department Name: Chemistry

Abstract

This project will focus on both the development and characterization of highly electronically conducting doped titanates and vanadates which have the perovskite structure for use as the active electrochemical component in efficient, fuel flexible, and redox stable electrodes in solid oxide fuel cells (SOFC) and other high-temperature electrochemical devices. While our previous work and that of others has demonstrated the potential of the titanates and vanadates as the electronically conducting components in SOFC anodes, the performance of these electrodes is generally rather poor due to their low catalytic activity for oxidation reactions. In order to address this problem, we propose to use recently discovered exsolution/dissolution phenomena in which transition metals (e.g. Ni, Pt, Pd) move into and out of a perovskite lattice as the ambient conditions are changed from oxidizing to reducing. Exsolution of the metals from the host perovskite lattice under reducing conditions will be used to decorate the electrode surface with nanoparticles of highly catalytically active materials. Since the metals can be dissolved back into the oxide upon exposure to oxidizing conditions, dissolution/exsolution cycles can potentially be used to regenerate catalytic activity resulting in highly robust electrodes. We also propose that the exsolved metals will have a degree of anchorage to the host lattice and hence will be more stable than catalysts added by more conventional means. Developing a detailed understanding of the mechanism of the exsolution/dissolution process, its dependence on the oxide composition and defect chemistry, and the relationships between microstructure and electrochemical performance are therefore the primary goals of the proposed project. The research team will be composed of the Vohs/Gorte groups at the University of Pennsylvania and the Irvine group at the University of St. Andrews. These groups both have extensive expertise in solid-state electrochemical systems, are world leaders in fuel cell research, and bring unique experimental capabilities to the collaboration (e.g. in situ TEM at St. Andrews and coulometric titration at Penn) and also have a long track record of using collaborative approaches to achieve research goals

Planned Impact

Global warming and energy security are probably the greatest challenges facing mankind. These problems need urgent and rapid responses in the way that we use and exploit energy sources. A critical component of the solution is the implementation of new disruptive energy technologies, such as fuel cells, that will totally re-shape our energy economy. The goal of this project is to help address this need by developing highly robust and fuel flexible electrodes for energy efficient solid oxide fuel cells.
The development of direct oxidation anodes for SOFC will allow for the design of simpler, more flexible SOFC systems and this will hasten their introduction into commercial applications. As noted above this technology will also help to reduce the demand on fossil energy reserves by using these fuels more efficiently and this in turn will allow for reduced emission of greenhouse gases. There is also an important need for well qualified researchers in fuel cell and other electrochemical energy conversion technologies, if we are to fully implement this important new industry. This project will help address this need by training scientists and engineers from diverse backgrounds as experts in electrochemical materials science. The international collaboration involved in the project will also help to better prepare the students who work on the project for careers in an ever increasing global marketplace
 
Description We have discovered that a new concept in catalyst manufacture, redox exsolution delivers catalytic nanoparticles of great stability and resistant to coking.
Exploitation Route Of interest to industry in steam methane reforming and related hydrocarbon conversions.
Sectors Chemicals,Energy

 
Description Building strong relationships with the University of Pennsylvania resulting in a joint paper in Nature Communications as well as a number of other joint outputs.
First Year Of Impact 2012
Sector Energy
Impact Types Economic

 
Title Data underpinning - Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3 
Description Perovskite electrodes have been considered as an alternative to Ni-YSZ cermet-based anodes as they afford better tolerance towards coking and impurities and due to redox stability can allow very high levels of fuel utilisation. Unfortunately performance levels have rarely been sufficient, especially for a second generation anode supported concept. A-site deficient lanthanum and calcium co-doped SrTiO3, La0.2Sr0.25Ca0.45TiO3 (LSCTA-) shows promising thermal, mechanical and electrical properties and has been investigated in this study as a potential anode support material for SOFCs. Flat multilayer ceramics cells were fabricated by aqueous tape casting and co-sintering, comprising a 450-?m thick porous LSCTA- scaffold support, a dense YSZ electrolyte and a thin layer of La0.8Sr0.2CoO3-d (LSC)-La0.8Sr0.2FeO3-d ( LSF)-YSZ cathode. Impregnation of a small content of Ni significantly enhanced fuel cell performance over naked LSCTA-. Use of ceria as a co-catalyst was found to improve the microstructure and stability of impregnated Ni and this in combination with the catalytic enhancement from ceria significantly improved performance over Ni impregnation alone. With addition of CeO2 and Ni to a titanate scaffold anode that had been pre-reduced at 1000oC, a maximum powder density of 0.96Wcm-2 can be achieved at 800oC using humidified hydrogen as fuel. The encouraging results show that an oxide anode material, LSCTA- can be used as anode support with YSZ electrolyte heralding a new option for SOFC development. 
Type Of Material Database/Collection of data 
Year Produced 2016 
Provided To Others? Yes  
 
Title Data underpinning - Image analysis and modeling of the orientation of pores in a constrained film on a rigid substrate 
Description  
Type Of Material Database/Collection of data 
Year Produced 2015 
Provided To Others? Yes  
 
Title Data underpinning : Switching on electrocatalytic activity in solid oxide cells 
Description  
Type Of Material Database/Collection of data 
Year Produced 2016 
Provided To Others? Yes  
 
Title Data underpinning:Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution 
Description  
Type Of Material Database/Collection of data 
Year Produced 2015 
Provided To Others? Yes  
 
Description Collaboration with University of Pennsylvania 
Organisation University of Pennsylvania
Department Department of Chemical & Biomolecular Engineering
Country United States 
Sector Academic/University 
PI Contribution Collaborative project
Collaborator Contribution joint work
Impact joint project
Start Year 2013
 
Title METHOD FOR PRODUCING AN ELECTRODE CATALYST FROM A PEROVSKITE METAL OXIDE 
Description The invention relates to a method of producing electrode materials for solid oxide cells which comprises applying an electric potential to a metal oxide which has a perovskite crystal structure. The resultant electrode catalyst exhibits excellent electrochemical performance. The invention extends to the electrode catalyst itself, and to electrodes and solid oxide cells comprising the electrode catalyst. 
IP Reference CA3030088 
Protection Patent application published
Year Protection Granted 2018
Licensed Commercial In Confidence
Impact -
 
Description EMRS, Virtual Conference 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact The VIRTUAL 2021 Spring Meeting will consist of parallel symposia with invited speakers, oral and poster presentations, assorted by plenary sessions and a number of workshops and training courses. As a new item for posters, short oral presentation will give each attendee the opportunity to highlight the major results.

The high quality scientific program will address different topics organized into 19 symposia arranged in 4 clusters covering the fields of energy materials, nanomaterials and advanced characterization, biomaterials and soft materials, as well as materials for electronics, magnetics and photonics.

In parallel with the technical sessions, international exhibitors will have the opportunity to promote their equipment, systems, products, software, publications and services during the meeting.
Year(s) Of Engagement Activity 2021
URL https://www.european-mrs.com/meetings/2021-spring-meeting-0
 
Description ICTN-KLC, India 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact International Conference on Thin Films & Nanotechnology: Knowledge, Leadership, & Commercialization

The ICTN-KLC: 2021, the first one of its kind, aims to bring together students, academicians, scientists, technologists, and entrepreneurs working on development and applications of thin films and nanomaterials from lab to commercial (industrial) scale. The inaugural 3-days conference will be organized virtually from the foundation day of the Thin Film Lab (TFL). In addition to scientific talks, there will be sessions dedicated to research ethics, leadership, and entrepreneurship targeted mainly for early career researchers. The conference will consist of plenary/invited talks and contributed papers on various focus areas in Thin Films & Nanotechnology.
Year(s) Of Engagement Activity 2021
URL http://www.ictn-klc.org/
 
Description IVWFC 2021, Italy 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Virtual Workshop on Fuel cells - Oral contributions in the different fields of fuel cells/ electrolysers science and technology. Delivered by national and international specialists.
Year(s) Of Engagement Activity 2021
URL https://ivwfc.mater.unimib.it/
 
Description Invited Talk 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact The greatest challenge facing Solid oxide cells (SOC), in both fuel and electrolysis cell modes (i.e SOFCs and SOECs) is to deliver high, long-lasting electrocatalytic activity while ensuring cost and time-efficient electrode manufacture. Ultimately, this can best be achieved by growing appropriate nanoarchitectures under operationally relevant conditions, rather than through intricate ex situ procedures.

In our approach, metal particles are grown directly from the oxide support though in situ redox exsolution. We demonstrated that by understanding and manipulating the surface chemistry of an oxide support with adequately designed bulk (non)stoichiometry, one can control the size, distribution and surface coverage of produced particles. We also revealed that the emergent particles are generally epitaxially socketed in the parent perovskite which appears to be the underlying origin of their remarkable stability, including unique resistance of metal particles to agglomeration and to hydrocarbon coking, whilst retaining catalytic activit.

Operando redox treatments yield emergent nanomaterials at potentials in excess of 2V. Here we apply this technique to drive steam, CO2 and coelectrolysis processes at emergent metals and alloy particles.
Year(s) Of Engagement Activity 2020
URL https://ecs.confex.com/ecs/prime2020/meetingapp.cgi/Paper/143913
 
Description MEMP 2021 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Centre for Materials for Electronics Technology (C-MET), Pune is organizing an International Conference on Multifunctional Electronic Materials & Processing (MEMP 2021) at Pune, India during 8-10 March 2021.
MEMP-2021 provide an opportunity to scientists, researchers, academicians and young students to interact with eminent scientists/technologists working in the field of multifunctional electronic materials for various applications & their processing for making devices.
Materials required for energy storage, energy generation, Nanostructured materials, Quantum dots, Sensors, Neutrino Energy Conversion /storage. Flexible devices, Photonic devices and processing techniques like Additive Manufacturing (3D printing) will be discussed here.
MEMP 2021 will serve as a common platform for discussing the new ideas developments/ breakthroughs and future prospects pertaining to multifunctional electronic materials with some of the leading scientists/ technologists as well as to be acquainted with their experience and knowledge.
Year(s) Of Engagement Activity 2021
URL https://journalsofindia.com/multifunctional-electronic-materials-processing-memp-2021/
 
Description STACEES Network Launch 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Supporters
Results and Impact The launch of The St Andrews Network for Climate, Energy, Environment and Sustainability (STACEES) is an interdisciplinary research-focused initiative launched in April 2021 at The University of St Andrews.

STACEES' objective is to drive cohesion and capacity in environmental sustainability research at St Andrews, boosting its impact and visibility. The network's vision is to build ambitious, lasting research capabilities that position the University at the centre of international conversations on climate change, energy research and environmental sustainability.
Year(s) Of Engagement Activity 2021
URL https://events.st-andrews.ac.uk/events/sta-cees-network-launch-with-guest-speaker-prof-john-irvine/
 
Description UKRI at COP26 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Policymakers/politicians
Results and Impact Our role in supporting a Year of Climate Action.

The UN Climate Change Conference (COP26) is underway. We are supporting activities and events that inspire and engage people and promote positive climate action. Whether you are at COP26 or not, register to access our events, exhibitor booths and engage with researchers and innovators.

On these pages you will find out more about:

the role research and innovation play in tackling climate change
events that UK Research and Innovation is hosting and promoting for COP26, and how to sign up and attend
how to join the climate conversation and share your work and ideas.
Year(s) Of Engagement Activity 2021
URL https://www.ukri.org/our-work/responding-to-climate-change/ukri-towards-cop26/
 
Description eCOCO2 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact eCOCO2: An interactive webinar addressing challenges and opportunities for introduction of fuels and chemical carriers produced from CO2
.
From CO2 into fuels: A scientific, industrial, social and political perspective
Year(s) Of Engagement Activity 2021
URL https://ecocoo.eu/assets/files/eCOCO2_Workshop_full-programme.pdf