EPSRC Fellowships in Manufacturing: Additive nanomanufacturing via probe-based pick-and-place nanoparticle assembly

Lead Research Organisation: University of Oxford
Department Name: Materials

Abstract

The United Nations University in Tokyo estimates that an average 2g silicon chip costs 1.6kg of fossil fuel, 73g of chemicals and 32 kg of water. This is primarily because the nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations thus far in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. Meanwhile in academia, considerable research into self-assembly of nanoscale particles has also been of interest. These techniques have been very important in understanding how to use chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The proposed research aims to have nanoscale robotic arms picking and placing nanoparticles to manufacture new devices with increased functionality, update nanoscale devices and to reduce the subtractive waste generated in nanomanufacturing.

Planned Impact

The global market for semiconductors is estimated to be worth $279 billion. In contrast to heavy manufacturing areas, a standard silicon fabrication plant costs in excess of $1.5 billion and has immense running costs in terms of the scientists required to operate them. This market is reliant on the use of these specialised and highly expensive fabrication plants. This drives up the cost of development and limits innovation in this sector. Furthermore, this industry has traditionally had the perception of being a 'clean' industry environmentally, and they have a large impetus to adapt technologies that are more environmentally friendly. The reduction in costs of water waste that is a result of the frequent cleansing requirements in a layer-by-layer subtractive manufacturing process will be an obvious impact of the proposed process.
Whist the manufacturing plants are predominantly in the US and Far East, the design and development of silicon chips is concentrated first in the US and then in Europe. In fact the South West of England is home to the biggest silicon design cluster outside of Silicon Valley. The region is home to over 200 design and development companies including major internationals such as ST Microelectronics, Broadcom, Nvidia and Infineon. Such a fundamental change in the manufacturing process has significant potential for impact improving their bottom line through cheaper processes. Smaller design houses could bring products to market far more quickly and cheaply should the process be validated, opening up the market to greater innovation and growth potential. Therefore, this cluster has a direct interest in the research project and in order to use their knowledge I intend to work with the Microelectronics iNet (support letter attached), a network dedicated to this cluster. With the additional involvement of global semiconductor firms, this will ensure the explicit involvement on the industry, as this is essential to establish impact.
The proposed project is ambitious, and has the potential for very high impact in an industry that the PI is very familiar with. In addition to the industrial advisory committee, impact activities including presenting research at conferences attended by the industry and government stakeholders such as the Materials Research Society meetings and IEEE Nanotechnology Conferences will be undertaken. Peer reviewed research articles in journals such as Nanotechnology, Nano Letters and IEEE Transactions on Nanotechnology will also be submitted.
The University of Exeter's Business School is actively pursuing research on, and has practical commitments with regard to responsible innovation, in particular on how impact is achieved by scientific research and technological innovation stemming from emerging techno-scientific fields, such as nanotechnology. Dr Elena Simakova, Lecturer of Management and a Social Scientist at the University of Exeter, will thus dedicate 5% of her time to study the societal relevance of the research of this project. Given public concerns over the potential ill effects of nanomanufacturing using nanoparticles, such a cross-disciplinary approach to impact is timely and innovative.

Publications

10 25 50
publication icon
Tweedie MEP (2018) Inhomogeneous Strain Release during Bending of WS2 on Flexible Substrates. in ACS applied materials & interfaces

publication icon
Wang M (2023) Varifocal Metalens Using Tunable and Ultralow-loss Dielectrics. in Advanced science (Weinheim, Baden-Wurttemberg, Germany)

publication icon
Youngblood N (2019) Tunable Volatility of Ge 2 Sb 2 Te 5 in Integrated Photonics in Advanced Functional Materials

 
Title E\PCOS 2022 - Art & Engineering - An exhibition of visual art 
Description For E\PCOS 2022 at Wolfson College Oxford, Artist in Residence, Méadhbh O'Connor, in collaboration with Harish Bhaskaran and his research group, is delighted to present an exhibition of visual art. This interim exhibition by Méadhbh marks an artist's impression from the many conversations shared on creativity, the role of the engineer in society and on teamwork. The genesis of anything new - a tool to be used, a work of art to be observed, an idea to be put into action - begins with the act of creation. Creativity, the fusion of two or more previously unrelated things, a reconfiguring of existing parts, the constant cycle of revision, improvement and invention, lies at the core of human endeavour. There is an association between high creativity and engineering that is sometmes not apparent in the minds of those outside the field. We want to change this perception and have begun with the help of an artst. Plotted in various points throughout the conference venue, the artworks take the form of textiles, flags, seating and abstract sculptures made using materials such as ribbon cable, copper and aluminium tape, cable sheathing, composite scientific and abstract imagery, Rexroth components and other parts. The work is intended as a playful take on the lab environment, the Advanced Nanoscale Engineering Group as a team in the historic setting of Oxford and creativity as an enduring, evolving process. 
Type Of Art Artistic/Creative Exhibition 
Year Produced 2022 
Impact Discussion, requests for artworks to utilised further within the University as a whole. 
 
Description We have developed Kelvin Force Mircroscopy methods out of necessity as we existing methods were deemed insufficient for the purposes of verifying nanoparticle charges. Specifically, we were unable to replicate past experiments by other groups on charge-drive nanoparticle assembly and suspected that nanoparticle charge was the issue. However, this led to an entirely new enquiry into the exact mechanism that drives nanoparticle assembly and recently we have found evidence that the Janus interface drives such assembly. This in an entirely new finding for nanoparticles, and we are now in the process of verifying this new finding thoroughly. Having also carried out the most comprehensive survey of Additive Nanomanufacturing methods, we also have started a substantial program to build an Electrohydrodynamic Jet Printing set-up to print 300 nm or smaller lines to enable true additive nanomanufacturing. This is an ongoing grant that has resulted in influencing many tangential research areas, particularly in the areas of solid state displays, where our group's results have captured a lot of world-wide attention and have resulted in some IP generation and £137,000 in seed-funding to allow for commercialization. We have also so far developed an EHD based nano patterning system, as well as advanced modelling techniques to enable the prediction of nano particle movement in charged liquids. Going into more detail, our capability regarding EHD nanopatterning allows us to pattern self-assembled monolayer compounds on surfaces, thus enabling further functionalization -particularly with nanoparticles. This has implications for SERS devices, single particle implications and nanoplasmonic structure formation. We are also able to demonstrate local resist deposition to enable further manufacturing goals. Recently, we demonstrated that PMMA can be printed using EHD with dimensions of up to 700 nm. In order to achieve fully the objective of flexible electronic devices, a lot of attention has been given to developing conductive polymeric inks. Traditional conductive inks used have been metal based. Whilst these provide good performance, they fracture very easily and do not survive extended stress due to bending. Polymer inks are more mechanically able to withstand strain and bending. A good understanding of their physical properties is necessary for optimal printing using EHD. Fundamental study into how surfaces can be tailored to enhance the resolution of printed structures has been a major effort. Whilst lithography is not traditionally considered an additive technique, it can be exploited to enable better additive processing. By modifying a surface with a series of channels, or nanopores, we have demonstrated a drastic improvement in the resolution achievable with EHD, more so when self-assembled monolayers are utilizing in controlling the surface wetting.With the use of self-assembled monolayers, surface energy control is afforded (hydrophobicity). This is a well-documented process. However, the electrical properties of these monolayers is less well known. We have sought to understand the dielectric breakdown points of these monolayers in order to know the safe-operating limits of EHD without damaging the films, thus limiting the resolution achievable. We have observed that under extreme electric fields, such as those generated during EHD, the contact angle of water droplets changes drastically after exposure of the monolayers to the fields. In additional we have also developed processes for self-aligned graphene electrodes with nanometer dimensions, and showed (unexpectedly) that there is a scaling limit to these. This work was published and well received by the scientific community. In addition, we have also shown significant progress in metrology, work that has led on to elucidate mechanisms in subsequent work done the the EPSRC funded WAFT program.
Exploitation Route Our findings have been used to develop a spin-out company to develop displays (www.bodletechnologies.com); They have resulted in advanced metrology techniques that are now being used to help a range of 2D materials characterization at the nanoscale by other groups; Our findings on the scaling limits of nano gaps are helping guide predictions on how graphene electrodes can be scaled (i.e. there is a limit), but importantly sheds potential problems in molecular measurements using nanoscale graphene electrodes (i.e. are you measuring what you think you are?). These are important scientific results that can help guide future work in this area. We developed other tools including optoelectronic measurement tools which can be used by many other fields and we will actively investigate how to continue to improve on that new added capability which was a result of this grant.
Sectors Aerospace, Defence and Marine,Chemicals,Creative Economy,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Healthcare,Manufacturing, including Industrial Biotechology,Culture, Heritage, Museums and Collections

URL http://nanoeng.materials.ox.ac.uk/Advanced_Nanoscale_Engineering_at_Oxford/Home.html
 
Description New program grant (WAFT). Spinouts in the long term out of this long-term support.
First Year Of Impact 2014
Sector Chemicals,Communities and Social Services/Policy,Creative Economy,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Healthcare,Manufacturing, including Industrial Biotechology,Pharmaceuticals and Medical Biotechnology
Impact Types Cultural,Societal,Economic,Policy & public services

 
Description Designing Nanosystems: the CMOS Way; Standard Research - NR1
Amount £298,001 (GBP)
Funding ID EP/N010159/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2016 
End 11/2017
 
Description ICT31: Fun-Comp
Amount £3,996,951 (GBP)
Funding ID 780848 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 03/2018 
End 02/2022
 
Description Invited Renewal - EPSRC Manufacturing Fellowship
Amount £1,116,378 (GBP)
Funding ID EP/R001677/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2019 
End 01/2022
 
Description Next Generation Chalcogenides (ChAMP); MaFuMa grant
Amount £2,508,176 (GBP)
Funding ID EP/M015130/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 02/2015 
End 01/2020
 
Description Next generation computer memories - using light to store data; IAA grant
Amount £93,886 (GBP)
Funding ID EP/R511742/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 08/2017 
End 03/2020
 
Description Wearable and Flexible Technologies (WAFT); MaFuMa grant
Amount £2,476,881 (GBP)
Funding ID EP/M015173/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 05/2015 
End 04/2020
 
Title High current conductive AFM 
Description Our set-up on an Asylum MFP 3D atomic force microscope allows us to induce up to 1 mA of current through a conductive AFM tip. This allows us to probe the nanoscale electrical properties of functional materials at current densities commonly used in real world devices, helping accelerate real-world usability of such materials in devices that have dimensions of devices, eliminating the need for lithographic patterning in order to screen novel materials. We have successfully used this to characterize phase change materials, and more recently are adapting this for 2D materials. 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact A spin out company Bodle. Several papers and patents resulting from the development of this technique. 
 
Title Optoelectronic testing station - Fiber Coupling with nanometer precision 
Description Set-ups used for combined optoelectronic testing of nanoscale and microscope devices have several limitations with respect to mechanical, electrical and optical operation properties. Therefore, in order to continue with the study of mixed mode electro-optical operation of functional materials, a new experimental set-up with better characteristics was required. The following features were identified. In order to aim the laser accurately on the device, a raster reflectivity scan was necessary. This, in turn, called for the improvement in reproducibility of the stage position, as well as a reduction of the drift due to thermal expansion and mechanical relaxation of the components. Additionally, by reducing mechanical drift, the time available to perform the test would also increase, allowing for better focusing and aiming into the area of interest. Improvement in the scan step resolution was also required, in comparison to the 100nm step resolution provided by the pico-motors of the former setup. Also, nano-second range optical and electrical pulses were needed to induce amorphization of GST devices. All of the before mentioned requirements were subsequently incorporated into a new experimental setup in a way which is described in detail in a thesis submitted by Gerardo Rodriguez Henandez whilst working in Harish Bhaskaran's laboratory. The requirements for the optical component of the experimental setup corresponded closely to a laser-scanning microscope. Such an instrument produces images by raster scanning a focused laser beam on a given sample and acquiring the intensity of the reflected signal at every point during the scan. However, higher power than that required to simply acquire reflectance scans (3mW) was also needed to optically induce phase changes of phase change materials (~60mW). One important feature in the current design was the use of fibre-coupled optical components. Such components allow a reduction of the setup footprint, simplify the alignment and improve the sensitivity to vibration and are generally safer to use. 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact A paper and a research thesis was published. 2 new patents have been filed. 
 
Description EPSRC Fellow in Manufacturing - Industrial Partners 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality.
Collaborator Contribution The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights.
Impact High standard journal papers and invited talks in prestigious conferences.
Start Year 2013
 
Description EPSRC Fellow in Manufacturing - Industrial Partners 
Organisation Oxford Instruments Asylum Research
Country United States 
Sector Private 
PI Contribution My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality.
Collaborator Contribution The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights.
Impact High standard journal papers and invited talks in prestigious conferences.
Start Year 2013
 
Description EPSRC Fellow in Manufacturing - Industrial Partners 
Organisation iNets South West
Country United Kingdom 
Sector Private 
PI Contribution My Advanced Nanoscale Engineering Group researches the self-assembly of nanoscale particles and develops techniques using chemistry to make particles arrange themselves in pre-determined patterns. In this fellowship, I intend to advance these developments towards a directed, additive nanomanufacturing technique using nanoscale probes to pick and place nanoparticles. The Industrial Partners show interest in the manufacture of new devices with increased functionality.
Collaborator Contribution The nanomanufacturing technology used thus far is a layer-by-layer additive and subtractive process. Innovations in nanomanufacturing have focused mostly on reducing feature sizes, which have now reached remarkably small dimensions; further scaling will not necessarily deliver increased performance. This opens up the possibility of updating existing electronics, as functionality rather than scaling (or the feature size node) is the main driver. These Industrial Partners conduct state-of-the-art research in this direction and support me with discussions, industrial and market insights.
Impact High standard journal papers and invited talks in prestigious conferences.
Start Year 2013
 
Description Fun-Comp 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation Interuniversity Micro-Electronics Centre
Country Belgium 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS)
Country France 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation Thales Group
Country France 
Sector Private 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Exeter
Country United Kingdom 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Münster
Country Germany 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Invited Manufacturing Fellowship Extension 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution industrial collaboration
Collaborator Contribution industrial advice
Impact N/A
Start Year 2018
 
Description UltraSRD - Innovate UK 
Organisation Bodle Technologies Ltd
Country United Kingdom 
Sector Private 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description UltraSRD - Innovate UK 
Organisation M-Solv
Country United Kingdom 
Sector Private 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description UltraSRD - Innovate UK 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description UltraSRD - Innovate UK 
Organisation University of Southampton
Country United Kingdom 
Sector Academic/University 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description WAFT Industrial Partners 
Organisation BASF
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Bodle Technologies Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Centre for Process Innovation (CPI)
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation CreaPhys GmbH
Country Germany 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Defence Science & Technology Laboratory (DSTL)
Country United Kingdom 
Sector Public 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Eckersley O'Callaghan
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Fraunhofer Society
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Heliatek GmbH
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Kurt J Lesker Company
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Msolv Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Instruments
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Instruments Asylum Research
Country United States 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Photovoltaics
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Photovoltaics
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Plasma App Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Pragmatic Printing Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation SONY
Country Japan 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Sharp Laboratories of Europe Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Swiss Center for Electronics and Microtechnology
Country Switzerland 
Sector Charity/Non Profit 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation University of Münster
Country Germany 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation University of Pennsylvania
Country United States 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Title H Bhaskaran 1321429.1 
Description Patent Application Status: File. Type: Priority. Application Date: 4 Dec 2013. 
IP Reference GB1321429.1 
Protection Patent application published
Year Protection Granted 2013
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1322912.5 
Description Patent Application Status: File. Type: Priority. Application Date: 23 Dec 2013. 
IP Reference GB1322912.5 
Protection Patent application published
Year Protection Granted 2013
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1322917.4 
Description Patent Application Status: File. Type: Priority. Application Date: 23 Dec 2013. 
IP Reference GB1322917.4 
Protection Patent application published
Year Protection Granted 2013
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1417974.1 
Description Patent Application Status: File. Type: Priority. Application Date: 10 Oct 2014. 
IP Reference GB1417974.1 
Protection Patent application published
Year Protection Granted 2014
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1417976.6 
Description Patent Application Status: File. Type: Priority. Application Date: 10 Oct 2014 
IP Reference GB1417976.6 
Protection Patent application published
Year Protection Granted 2014
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1509992.2 
Description Patent Application Status: File, Type: Priority. Application Date: 9 June 2015. 
IP Reference GB1509992.2 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1512914.1 
Description Patent Application Status: File, Type: Priority. Application Date: 22 July 2015. 
IP Reference GB1512914.1 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1516579.8 
Description Patent Application Status: File, Type: Priority. Application Date: 18 Sept 2015 
IP Reference GB1516579.8 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1518371.8 
Description Patent Application Status: File, Type: Priority. Application Date: 16 Oct 2015. 
IP Reference GB1518371.8 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title Tuneable Optical Coatings 
Description A new concept for tuneable optical coatings based on lossless phase change materials that show strong coupling between their structural and optical properties. 
IP Reference United Kingdom Patent Application No. 1908145.4 
Protection Patent application published
Year Protection Granted 2019
Licensed No
Impact Nothing yet.
 
Company Name Bodle Technologies Limited 
Description Bodle develops and commercialises a new class of active smart glazing products and displays. 
Year Established 2015 
Impact Bodle's core technology is about the creation and manipulation of colour that is reflected off a surface by changing the refractive index of ultra-thin functional layers. The technology is completely revolutionary, as it can achieve all of the following: • Extremely high resolution, with pixel sizes of sub-100 nm already demonstrated (compared to several micrometers for the best current technology). • Capable of very deep colour hues matching and even exceeding the range of colours possible by the latest technologies in displays • Can be clearly viewed in bright lighting conditions • Eye fatigue minimal as displays similar to paper • Very low power similar to electrochromic displays • Extremely high speed switching capable of video rendition in reflective mode, and even holographic displays possible as switching speeds are much lower than microseconds.
Website http://www.bodletechnologies.com
 
Description 12th International Workshop on Materials Behaviour at the Micro and nano Scale, China 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description 2022 MRS Spring Meeting & Exhibit, May 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Presentation: On-Demand Modifications of Thin-Film Transistors for Label-Free Biosensing Applications.
Year(s) Of Engagement Activity 2022
 
Description 6th IEEE International Conference on Emerging Electronics 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited Speaker: Photonic Computing - Devices for future systems.
Year(s) Of Engagement Activity 2022
URL https://ieee-icee.org/
 
Description 6th IEEE International Conference on Emerging Electronics 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Design for Robust and Efficient Neuromorphic Photonic Accelerator (Oral)
Samarth Aggarwal, Bowei Dong, June Sang Lee and Mengyun Wang (University of Oxford,
United Kingdom (Great Britain)); Andrew Katumba (Gent University & IMEC, Belgium); Peter Bienstman
(Gent University - imec, Belgium); Harish Bhaskaran (Oxford University, United Kingdom (Great Britain))
Year(s) Of Engagement Activity 2022
URL https://ieee-icee.org/wp-content/uploads/2022/12/Final-Detailed-IEEE-ICEE-Program-and-Abstract-Bookl...
 
Description A talk or presentation - A talk or presentation - International Workshop of Physical Computing, Italy - Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Samarth Aggarwal, Yuhan He, Iman Esmaeil Zadeh, Harish Bhaskaran* Reconfigurable Silicon Carbide photonics using Phase change materials
Year(s) Of Engagement Activity 2022
 
Description A talk or presentation - International Workshop of Physical Computing, Italy - Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Utku Emre Ali, Gaurav Modi, Ritesh Agarwal and Harish Bhaskaran* Phase Change Nanowires as Tunable NEMS
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Artist in Residence Meadhbh O'Connor's Insight Blog 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact On Mark Making: An artist's Impression from insitde Oxford's Bhaskaran Lab
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/features/mark-making-artist-s-impression-inside-oxford-s-bhaskaran-lab?fbc...
 
Description Cambridge Graphene CDT Adv. Tech Lecture 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact A high profile talk discussing the fundamentals of the research condcuted in the Advanced Nanoscale Engineering Group for the past decade - for those interested in the EPSRC Centre for Doctoral Trainng in Graphene Technology. Sparked questions and discussions afterwards.
Year(s) Of Engagement Activity 2022
URL https://www.graphene.cam.ac.uk/files/ea2022.pdf
 
Description Collaboration agreement with Digital University Kerala Oxford - Kerala Agreement 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Press release: On 11 October 2022 the University of Oxford entered into a Memorandum of Understanding (MoU) with the Kerala University of Digital Sciences, Innovation and Technology (DUK), to advance research and academic exchange in the fields of nanotechnology, AI, sustainability, digital health and innovation. Professor Harish Bhaskaran has been leading this initiative, and can be seen to the far left hand side of the photograph showing representatives* from the two institutions displaying the signed copies of the MoU.

You can read more about this exciting development on the MPLS website: 'Oxford to collaborate with Digital University Kerala on nanotechnology, AI, sustainability, digital health, and innovation'.
Year(s) Of Engagement Activity 2022
URL https://www.mpls.ox.ac.uk/latest/news/university-of-oxford-to-collaborate-with-digital-university-ke...
 
Description Conference on Lasers and Electro-Optics (CLEO), San Jose 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang† , J. S. Lee† , S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Reconfigurable metasurfaces based on low-loss phase change material Sb2Se3, Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, 7-12 May 2022. Oral presentation (online).
Spaked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Conference on Lasers and Electro-Optics (CLEO), San Jose 2022 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Gave a talk online in CLEO conference with over 50 participants from industry and academia.
Ultrafast Switching in Integrated Photonics using Antimony
Questions and discussions
Year(s) Of Engagement Activity 2022
URL https://ieeexplore.ieee.org/abstract/document/9891445
 
Description Discovery of new nanowire assembly process could enable more powerful computer chips 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Researchers from Oxford University's Department of Materials have developed a technique to precisely manipulate and place nanowires with sub-micron accuracy. This discovery could accelerate the development of even smaller and more powerful computer chips.
Year(s) Of Engagement Activity 2022
URL https://www.ox.ac.uk/news/2022-09-29-discovery-new-nanowire-assembly-process-could-enable-more-power...
 
Description ECOC 2020 - Virtual Workshop: Functional materials enable superior tensor cores to back propagation free photonic computing hardware 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Discussion from industry/academic experts to spark discussion around the topic of Pathway to Bring Photonics in High Performance Computing: from Materials to Applications
Year(s) Of Engagement Activity 2020
URL https://ecoco2020.org/index.php/programme/sunday-workshops
 
Description EPCOS 2022 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Hosted the European Phase-Change and Ovonics Symposium in Oxford. A three-day event with lectures and poster presentations including a dinner. Attended by over 200 both in person and virtually.
Year(s) Of Engagement Activity 2022
URL https://epcos2020.web.ox.ac.uk/
 
Description EPCOS 2022 Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Poster presentation at EPCOS conference , presented a paper title Reconfigurable Silicon Carbide Photonics using Phase Change Materials
Year(s) Of Engagement Activity 2022
 
Description EPCOS 2022 Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, June Sang Lee, Mengyun Wang, Harish Bhaskaran1* Ultra-Efficient Plasmonic Phase-Change Devices by Improved Mode Coupling, E\PCOS 2022, Oxford, UK, 13 - 19 September 2022. Poster presentation.
Sparked discussion and questioning
Year(s) Of Engagement Activity 2022
 
Description EPCOS 2022 Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Polarization-selective tunability in phase-change nanowires", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, EPCOS 2022, 18-21st September 2022, Oxford, UK (Oral presentation)
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description ESA Science Coffee - Invited Talk to the Advanced Concepts Team 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Space Exploration needs new nanoengineering concepts. Followed by Q&A and discussion
Year(s) Of Engagement Activity 2021
URL https://www.esa.int/gsp/ACT/coffee/2021-12-10-%20Harish%20Bhaskaran/
 
Description E\PCOS 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited speaker, hosting the 2020 E\PCOS Conference
Year(s) Of Engagement Activity 2019
URL http://epcos2019.cea.leti.fr/Documents/Final%20program%20EPCOS2019.pdf
 
Description E\PCOS 2022, Oxford 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang, J. S. Lee, S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Reconfigurable metasurfaces using lossless phase-change material, E\PCOS 2022, Oxford, UK, 13 - 19 September 2022. Oral presentation.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description FunComp Review Meetings x 3: Oxford, Belgium & Zurich (latter web based) 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Discussion of current outcomes and progress, sharing of ideas for future development and direction
Year(s) Of Engagement Activity 2019,2020
 
Description Future Directions of Chalcogenides Research Workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Facilitated discussions
Year(s) Of Engagement Activity 2019
 
Description Guest Lecture at EPFL: In-Memory Computing - An Optical Perspective 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact In-Memory Computing - An Optical Perspective - Q&A Session afterwards.
Year(s) Of Engagement Activity 2021
 
Description Harish Bhaskaran: Reflecting on Displays - the future of colour - TEDxEton talk, video on youtube.com 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact How phase change materials and the development of nano-scale components will change the nature of colour displays.
Year(s) Of Engagement Activity 2017
URL https://www.youtube.com/watch?v=Y3oBBMxX-u8
 
Description Hosted Conversations in Photonics Workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Hosted the Conversations in Photonics Workshop, with invited speakers the purpose of the workshop was to spark questions and debate.
Year(s) Of Engagement Activity 2021
 
Description Hosted the online European Phase-Change & Ovonic Symposium 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Hosted the online conference. Over 200 attendees,13 invited speakers, 24 oral presentations, 37 posters.
Year(s) Of Engagement Activity 2021
URL https://epcos2021.materials.ox.ac.uk/
 
Description IEEE CASS Intelligence in Chips: Integrated Sensors and Memristive Computing 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited Talk: In memory photonic computing - a new paradigm for accelerators.
Year(s) Of Engagement Activity 2022
URL https://www.intelligentchip.org/?fbclid=IwAR2chzzecLi3o1-BZryEr43uXqid1IO54w1UhCxEr3aoSoT-fi3zNOy57B...
 
Description IEEE Nano 2022 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Polarization-selective electro-optical tunability in phase-change nanowires", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, IEEE Nano, 4-8th July 2022, Palma de Mallorca, Spain (Oral presentation)
Sparked questions and further discussion.
Year(s) Of Engagement Activity 2022
URL https://2022.ieeenano.org/
 
Description IOP Photon 2022 - Nottingham 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Photonic non-von Neumann computing using functional materials for next generation AI hardware. Plenary Speaker.
Year(s) Of Engagement Activity 2022
URL https://www.photon.org.uk/plenary-speakers
 
Description In-memory signal processing and computing based on the integrated phase-change photonic platform Presented in SPIE Optics & photonics August 2020 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact It is a research dissemination for the photonic society, and discussed with experts and postgraduates students with the similar research fields. It is also a dissemination to the public and industry for better understanding of our work.
Year(s) Of Engagement Activity 2020
URL https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11469/114690H/In-memory-signal-pro...
 
Description Innolae Conference 20223 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited speaker: Novel nanomanufacturing processes for next-generation devices
Year(s) Of Engagement Activity 2023
URL https://innolae.org/invited-speakers
 
Description Integrated Photonics Research, Silicon and nanophotonics (IPR) Symposium: Machine Learning with Photonic Systems II - presentation 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presentation of latest research to experts from both academia and industry, followed by discussion.
Year(s) Of Engagement Activity 2021
 
Description International Workshop of Physical Computing, Italy - Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang, J. S. Lee, S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Reconfigurable metasurfaces using lossless phase-change materials
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description International Workshop on Physical Computing, Italy 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact In-memory photonic-electronic computing platform for convolutional processing - oral presentation. Sparked questions and discussions.
Year(s) Of Engagement Activity 2022
 
Description International Workshop on Physical Computing, Italy 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Attended as an invited speaker and took part in discusions and debates.
Year(s) Of Engagement Activity 2022
URL https://www.phoenixd.uni-hannover.de/en/about/news/physical-computing-2022
 
Description International Workshop on Physical Computing, Italy 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact International Workshop of Physical Computing, Erice, Italy, 29 October - 6 November 2022. Oral presentation.
Cheng, Zengguang, Tara Milne, Patrick Salter, Judy S. Kim, Samuel Humphrey, Martin Booth, and Harish Bhaskaran. 2021. "Antimony Thin Films Demonstrate Programmable Optical Nonlinearity." Science Advances 7 (1). American Association for the Advancement of Science. doi:10.1126/sciadv.abd7097.

Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description International Workshop on Physical Computing, Italy 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Reconfigurable nano-photonics using phase-change materials, Nikolaos Farmakidis, and Harish Bhaskaran
Oral presentation, sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description International Workshop on Physical Computing, Italy - Poster 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, June Sang Lee, Mengyun Wang, Harish Bhaskaran1* Ultra-Efficient Plasmonic Phase-Change Devices by Improved Mode Coupling, International Workshop of Physical Computing, Erice, Italy, 29 October - 6 November 2022. Poster presentation.
Year(s) Of Engagement Activity 2022
 
Description Invited Colloquium UPenn 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact discussion and questions.
Year(s) Of Engagement Activity 2019
URL https://www.physics.upenn.edu/events/2019/04/17/special-meammse-seminar-scalable-functional-phase-ch...
 
Description Invited Lecture at St Paul's Girls School 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Schools
Results and Impact Inted lecture as part of the Friday Lecture Programme, requested following a previous Lecture given to the Science Society.
Year(s) Of Engagement Activity 2021
 
Description Invited Talk at International Conference on Optical MEMS and Nanophotonics - 2021 Summer School, IEEE Photonics Society 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited Talk: Non-von Neumann photonic computing for machine learning and artificial intelligence, as part of the Reconfigurable Photonic Computing.
Year(s) Of Engagement Activity 2021
 
Description Invited Talk: 2021 Intelligence in Chip: Tomorrow of Integrated Circuits (ICTIC) - IEEE CASS Seasonal School 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presentation of talk: Photonic Neural Networks, followed by questions and discussion.
Year(s) Of Engagement Activity 2021
URL https://ic-tic.org/
 
Description Lighting up artificial neural networks 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact A team of international scientists have performed difficult machine learning computations using a nano-scale device, named an "optomemristor". The chalcogenide thin-film device uses both light and electrical signals to interact and emulate multi-factor biological computations of the mammalian brain while consuming very little energy.
Year(s) Of Engagement Activity 2022
URL https://www.eurekalert.org/news-releases/950994
 
Description MEMRISYS 2022 Conference 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited Talk - Optical Memristors and their Applications in photonic computing
Year(s) Of Engagement Activity 2022
URL https://www.memrisys2022.com/
 
Description META 2022 Torremolinos - Spain 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited talk Reconfigurable nano-photonics enabled by electrically and optically active phase-change materials. Nikolaos Farmakidis, Harish Bhaskaran Oxford University (United Kingdom) Photonic circuits have the potential to transform the way we process information through data multiplexing and parallelisation of computational tasks. Yet, the ability to electrically program, reconfigure and store information in conventional dielectric photonics remains challenging. Here we explore hybrid structures combining electrically and optically active phase-change materials, with nanoplasmonic components which are designed to enhance light-matter interactions and confine optical fields to dimensions compatible with CMOS nanoelectronics.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description META 2022 Torremolinos - Spain 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Reconfigurable nano-photonics enabled by electrically and optically active phase-change materials, presentation of latest findings to postgrads, industry and academic peers.
Year(s) Of Engagement Activity 2022
URL https://metaconferences.org/META/index.php/META2022/index
 
Description META Materials Inc Lunch & Learn March 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Invited talk: Switchable Surfaces, sparked questions and discussions relevant to the field of work for the business.
Year(s) Of Engagement Activity 2023
 
Description MIT Colloquium Dec 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited Colloquium sparked discussions and questions.
Year(s) Of Engagement Activity 2019
 
Description MME 2019 Conference, Oxford 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Hosted the well established European annual workshop on microtechnology.
Year(s) Of Engagement Activity 2019
 
Description MRS Fall Meeting 2022 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Polarization-selective tunability in hybrid phase-change nanowires", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, 2022 MRS Fall meeting, 27th November - 2nd December 2022, Boston, Massachusetts (Oral presentation)
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description MRS Fall Meeting Dec 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Keynote speaker: Optoelectronic Applications of Phase Change Materials, faciliated discussion
Year(s) Of Engagement Activity 2019
URL https://www.mrs.org/fall2019/activities-events/other/electronics-and-photonics-workshop
 
Description Machine Learning Photonics, Italy 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited lecturer: Interfacing optics and electronics on a chip.
Year(s) Of Engagement Activity 2022
URL https://mlph2022.lakecomoschool.org/confirmed-lecturers/
 
Description Media Interview BBC World Service Radio: Digital Planet 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Following publication of paper: Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality
Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett1, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran
published in Science Advances, 29 November 2019
Year(s) Of Engagement Activity 2019
 
Description Nature Publication: Research Highlight in response to press release 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Responded to request for information for a Research Highlight Article regarding paper Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality published in Science Advances, 29 November 2019.
Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran
Year(s) Of Engagement Activity 2019
 
Description OPIC 2021 ICNN Keynote Speaker: In-memory Photonic Computing Approaches to Photoinc Tensor Cores 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Invited Talk given at ICNN 2021, part of the Optics & phtoonics International Congress 2021. Virtual presentation which presented knowledge and invited discussion.
Year(s) Of Engagement Activity 2021
 
Description On-chip photonics synapse - Overview of attention for article published in Science Advances - 18 news stories from 18 outlets 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Photonic microchips will process information like the human brain (Digital Journal, 08 Oct 2017); On-Chip Photonic Synapse Mimics Neural Synapse (Photonics.com, 04 Oct 2017); Researchers Have Developed Microchips That Behave Like Brain Cells (True Viral News, 02 Oct 2017; Phase-change material makes first on-chip photonics synapse (Nanotechweb, 29 Sep 201); Brain-like photonic microchips developed (The Hindu Business Line, 29 Sep 2017); ?????? ??????? ?????????? ????? ????? ????????? ? ??????? ????????? ????????? (Vesti.ru, 29 Sep 201); Brain-like photonic microchips developed (The Financial Express (IND), 29 Sep 2017); Brain-like photonic microchips developed (Business Standard, 29 Sep 2017); "Brain-like" photonic microchips may lead to new generation of computing: research (China.org, 28 Sep 2017); Scientists Make a Crucial Step Towards Unlocking the "Holy Grail" of Computing (Azooptics.com, 28 Sep 2017); Microchip Concept That Mimics Brain Cells Could Change The Future Of Computers (International Business Times, 28 Sep 2017); Photonics takes a step towards creating brain-like photonics microchips (MWEE, 28 Sep 2017); Researchers Have Developed Microchips That Behave Like Brain Cells (Science Alert, 28 Sep 2017); Move Towards 'Holy Grail' of Computing by Creation of Brain-like Photonic Microchips (Science Newsline, 27 Sep 2017); Scientists move step towards "holy grail" of computing by creating brain-like photonic microchips
(University of Exeter, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (Long Room, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (EurekAlert!, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (Phys.org, 27 Sep 2017)
Year(s) Of Engagement Activity 2017
URL http://advances.sciencemag.org/content/3/9/e1700160
 
Description Optical MEMS and Nanophotonics (OMN) Summer School, Invited Talk: Non-von Neumann photonic computing for machine learning and artificial Intelligence 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited speaker for the Reconfigurable Photonic Computing portion of the Optical MEMS and Nanophotonics (OMN) Summer School. Presentation of research, followed by Q&A and discussion.
Year(s) Of Engagement Activity 2021
URL https://omn2021.org/speakers/
 
Description Oral Paper presented at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Demonstration of over 108 cycling endurance in the nonvolatile photonic memory cells
Year(s) Of Engagement Activity 2021
 
Description Oral Paper presented at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Electrically Programmable Integrated Plasmonic Phase-Change Memories with Optoelectronic Readout
Year(s) Of Engagement Activity 2021
 
Description Oral Paper presented at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Mimicking biphasic synapses on a photonic platform
Year(s) Of Engagement Activity 2021
 
Description Oxford Photonics Day 2022 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Hybridized-Active-Dielectric (HAD) nanowires for polarization-selective memory", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, Oxford Photonics Day 2022, 28th September 2022, Oxford, UK (Oral presentation)
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Oxford Photonics Day 2022 Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang, J. S. Lee, S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Reconfigurable metasurfaces using lossless phase-change materials, Oxford Photonics Day, Oxford, UK, 28 September 2022. Poster presentation.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Oxford Photonics Day 2022 Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, June Sang Lee, Mengyun Wang, Harish Bhaskaran1* Ultra-Efficient Plasmonic Phase-Change Devices by Improved Mode Coupling, Oxford Photonics Day, Oxford, UK, 28 September 2022. Poster presentation.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Oxford Prospects Programme Summer School Lecture 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Undergraduate students
Results and Impact Lecture and discussion
Year(s) Of Engagement Activity 2021
 
Description PhD Workshop at Microsoft Research Cambridge 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Presentation and discussions
Year(s) Of Engagement Activity 2019
 
Description Phemotronics School Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Perspective of PCM applications: A company vision - virtual presentation at the PHEMTRONICS organised the 1st European School on Plasmonic and Phase Change Materials. Resulted in teaching, questions and discussions for students interested in the area of study.
Year(s) Of Engagement Activity 2022
 
Description Photonics Conference 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Conversations in Oxford - Future of Integrated Photonics in Computing, attracted global keynote speakers, and stemmed the beginning of additional events to continue to the conversation.
Year(s) Of Engagement Activity 2019
URL http://mme2019.manucodiata.org/index.php/future-of-photonic-computing
 
Description Poster Presentation at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Dynamic modulation of low-loss phase change materials on photonic waveguides
Year(s) Of Engagement Activity 2021
 
Description Presentation/Seminar: Thales Group, Paris, 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Title: Photonics using functional materials for computing

Seminar Abstract:  Machine Learning and Artificial Intelligence would be possible without the fantastic advances in electronics, but surprisingly, new techniques and architectures for hardware engineering of such devices has only recently become an important topic. In this talk, I shall talk about how both device concepts and new materials can bring about a step change in this field. Photonics and Optoelectronics will become mainstream in the next few years, and I hope to convince you that whatever route these technologies take, a class of materials known as phase change materials will play a key role in their commercialization. I shall give an overview of these with a view towards their near-term applications in displays, and their medium-to-long-term potential in integrated photonic memories to photonic machine-learning hardware components, with a few of our recent results in this area.

To encourage discussion.
Year(s) Of Engagement Activity 2021
 
Description Press Release announcing Phoenics Project 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Breaking Moore's Law: New Photonic computing project aims to speed up artificial intelligence computing power to petascale processing levels
Year(s) Of Engagement Activity 2021
URL https://www.mpls.ox.ac.uk/latest/news/breaking-moore2019s-law-new-photonic-computing-project-aims-to...
 
Description Press Release: Nanoscale films of a pure metal exist in two stable optically distinguishable states 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Press release distributed to international press list regarding paper publication.
Year(s) Of Engagement Activity 2021
 
Description Press Release: Science Advances Article Announcement 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Press interest resulting in radio and magazine interviews.
Year(s) Of Engagement Activity 2019
 
Description Press release announcing paper publish in ACS Photonics 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact New adaptable smart window coating could help heat or cool a home and save energy
Press release picked up in many news outlets including International, consumer, trade, science news sites and print.
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/2022-02-07-new-adaptable-smart-window-coating-could-help-heat-or-cool-home...
 
Description Press release announcing paper published in Journal of Microsystems and nanoengineering 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact The Art of Calligraphy Inspires new nanomanufacturing technique
Year(s) Of Engagement Activity 2021
URL https://www.mpls.ox.ac.uk/latest/news/the-art-of-calligraphy-inspires-new-nanomanufacturing-techniqu...
 
Description QuEEN Advisory Board Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description RANK Conference 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Lead Speaker: Photonic Neuromorphic computing using functional materials
Year(s) Of Engagement Activity 2023
 
Description Rank Symposium Neuromorphic Photonics Feb 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Hybrid nanophotonic systems for in-memory computing at the interface of optics and electronics, Nikolaos Farmakidis, and Harish Bhaskaran
Sparked discussion and questions
Year(s) Of Engagement Activity 2023
 
Description Rank Symposium Neuromorphic Photonics Feb 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Exploiting degrees of freedom in active nanophotonic devices", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, Rank Symposium Neuromorphic Photonics, 6-9th February 2023, Grasmere, Cumbria, UK (Oral presentation)
Sparked discussions and questions
Year(s) Of Engagement Activity 2023
 
Description Researchers develop the world's first ultra-fast photonic computing processor using polarisation 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact New research uses multiple polarisation channels to carry out parallel processing - enhancing computing density by several orders over conventional electronic chips.

In a paper published today in Science Advances, researchers at the University of Oxford have developed a method using the polarisation of light to maximise information storage density and computing performance using nanowires.
Year(s) Of Engagement Activity 2022
URL https://www.ox.ac.uk/news/2022-06-16-researchers-develop-worlds-first-ultra-fast-photonic-computing-...
 
Description Researchers develop world's first power-free frequency tuner using nanomaterials 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact In a paper published today in Nature Communications, researchers at the University of Oxford and the University of Pennsylvania have found a power-free and ultra-fast way of frequency tuning using functional nanowires.
Year(s) Of Engagement Activity 2022
URL https://www.ox.ac.uk/news/2022-03-18-researchers-develop-worlds-first-power-free-frequency-tuner-usi...
 
Description SPIE Active Photonic Platforms Optics & Photonics 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited Talk: Integrated photonic components for computing and beyond.
Year(s) Of Engagement Activity 2022
 
Description SPIE Conference Presentation, Baltimore April 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited presentation.
Year(s) Of Engagement Activity 2019
URL https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10982/109820P/Phase-change-photoni...
 
Description SPIE Photonics West, San Francisco Jan/Feb 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang, J. S. Lee, S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Tunable metasurfaces using ultralow-loss phase-change materials, SPIE Photonics West, San Francisco, USA, 28 January - 2 February 2023. Oral presentation.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2023
URL https://spie.org/conferences-and-exhibitions/photonics-west/photonics-west-exhibition?SSO=1
 
Description Seeing the light: researchers develop new AI system using light to learn associatively 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Researchers at Oxford University's Department of Materials, working in collaboration with colleagues from Exeter and Munster have developed an on-chip optical processor capable of detecting similarities in datasets up to 1,000 times faster than conventional machine learning algorithms running on electronic processors.
Year(s) Of Engagement Activity 2022
URL https://www.ox.ac.uk/news/2022-07-27-seeing-light-researchers-develop-new-ai-system-using-light-lear...
 
Description St Paul's Girls School - Physics Society Talk 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Schools
Results and Impact Invited to give a presentation to the St Paul's Girl's School Physics Society. A Q&A panel session followed with great interest.

"Thank you so much for taking the time to give us such an engaging talk on Wednesday! It was fascinating to hear about natural resonance frequencies, nanobridges, NEMs and more - using the guitar really helped us understand and visualise these concepts which take place on a nanoscale. Others told me how much they enjoyed learning about how crucial nanotechnology is in devices we use all the time, and your emphasis on the need for creativity in STEM was truly inspiring.
I imagine how busy you must be and am very grateful that you were able to give us an insight into nanoengineering, a topic I'm sure will only increase in relevance!
With many thanks from all of us at St Paul's,"
Year(s) Of Engagement Activity 2021
 
Description The Future of Materials for Low Loss Electronics - HRS Roadmapping Workshops April 2020 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact Discussion and development of a roadmap that will be coming out in due course. ROYCE.
Year(s) Of Engagement Activity 2020
 
Description Ultra SRD (Innovate UK) Progress Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description WAFT Annual Meetings 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact We organized WAFT Annual meetings of industrial partners. More details at http://www.waftcollaboration.org
Year(s) Of Engagement Activity 2015,2016,2017
URL http://www.waftcollaboration.org
 
Description Yu Shu's Science Blog 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact New Water-based Approach to manufacturing Semiconductors
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/features?search=Yu+Shu&field_news_classification_tid=All
 
Description eFutures: Brain-inspired (neuromorphic) computing meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Third sector organisations
Results and Impact Workshop and discussion on the UK's current capabilities and future potential in energy efficient neuromorphic computing. Participation contributed to a report which currently being drafted.
Year(s) Of Engagement Activity 2022
URL https://efutures2.com/events-2/past-events/