SPECIFIC Tranche 1: Buildings as Power Stations

Lead Research Organisation: Swansea University
Department Name: College of Engineering

Abstract

Every day more solar energy falls on the Earth's surface than the whole of human kind will use in 27 years. At this point we do little to harvest this energy. Buildings are major consumers of energy and yet they are often clad in metal and glass, both materials which can be capable of sophisticated engineering. In the UK annual production of metal and glass for construction of the outside faces of buildings is running at around 300 million square metres per annum. The aim of SPECIFIC as an Innovation and Knowledge Centre (IKC) is to rapidly adapt excellent small scale devices that have been demonstrated in UK universities, scale up their application and ensure their stability so that the outsides of building can become active surfaces, essentially converting buildings into power stations. The key feature will be to combine technologies such that the panels will generate, store and release energy. This will create a whole new manufacturing sector for the UK as well as making a serious contribution towards our renewable energy targets and reducing carbon dioxide emissions.

Already as part of the IKCs activity in the first nine months we have produced demonstrator systems at an A4 scale to show to architects and building owners to gauge the market attractiveness. A major activity is underway with partners including Tata, Dyesol, Imperial College, Bangor and Bath University to 'industrialize' the manufacture of a new type of solar cell (the dye sensitized solar cell). The advantage this system has is it works well in lower light conditions and with low angles of illumination so making it ideal for application in Europe. A key is what to do with this electricity however since it is often generated when we do not need it. As such a key component of the next phase of the SPECIFIC IKC is to work with partners to develop a suitable storage option. This is a very different challenge to developing batteries for a mobile phone or computer. The key criteria are that it must last up to 40 years, be rechargeable every day, be made from sustainable and non toxic elements and have relatively low cost. This eliminates most of the more modern battery technologies and the IKC will be working on a revision of the original 'Edison' cells based on Nickel and Iron with support from Sheffield University and Tata (iron) and Vale Inco (Nickel). Another key aspect that often puts people off renewables is the appearance on a building. As such over the next two years we will be setting up work with colleagues at the Welsh School of Architecture and with product designers to make sure the products that UK industry produce are not only technically excellent but also aesthetically pleasing. In parallel we are building a pilot manufacturing facility next to the Innovation Centre to allow demonstration scale products to be made which can be attached and trialled on real buildings to evaluate their performance.

Planned Impact

The vision for SPECIFIC is a paradigm shift in energy generation through developing low cost macro scale micro generation systems based on a variety of architectural solutions to capture solar energy. The impact map for 2020 is summarised below and in the attached annex this is shown diagramatically together with pathways to achieving impact.

SPECIFIC: will be a self funded research development and training facility:
Employing 22 Technology Transfer fellows
Hosting 30 students with partner universities
Self funded revenue streams of £3m PA
New equipment investment annually £200k

SPECIFIC Wealth Creation; a major theme is creating a new green technology business in the UK based on energy from buildings
Target 20 million square metres per annum solar energy manufacturing
500 (+) manufacturing jobs
1500 (+) supply industry jobs
5000 (+) installation sales maintenance jobs
New billion pound manufacturing sector
Export potential for off grid power

SPECIFIC People; a key output are the potential employees and technologists for the proposed new industry sector
Minimum of 40 high skilled postgrads
135 trained industry staff
Established modular training programme
New part time schemes for industry delegates

Publications

10 25 50

publication icon
Carnie M (2012) Photocatalytic Oxidation of Triiodide in UVA-Exposed Dye-Sensitized Solar Cells in International Journal of Photoenergy

publication icon
Charbonneau C (2013) Rapid radiative platinisation for dye-sensitised solar cell counter electrodes in Progress in Photovoltaics: Research and Applications

publication icon
Pohjalainen E (2013) Water soluble binder for fabrication of Li4Ti5O12 electrodes in Journal of Power Sources

publication icon
Bryant D (2014) Ultrafast near-infrared curing of PEDOT:PSS in Organic Electronics

publication icon
Troughton J (2015) Rapid processing of perovskite solar cells in under 2.5 seconds in Journal of Materials Chemistry A

publication icon
Posada J (2015) Surface response investigation of parameters in the development of FeS based iron electrodes in Sustainable Energy Technologies and Assessments

publication icon
Posada J (2016) Controlling hydrogen evolution on iron electrodes in International Journal of Hydrogen Energy

publication icon
Troughton J (2016) Photonic flash-annealing of lead halide perovskite solar cells in 1 ms in Journal of Materials Chemistry A

 
Description As part of this project we have developed the concept of a Building as a Powerstation where a building surface can make heat or electricity from the suns energy which is then stored in the building for release later under controlled conditions.

This builds on earlier work on PV to combine low cost PV with battery solutions and the heating technologies developed as part of another EPSRC project. Whole buildings have now been developed to demonstrate the benefit of generation, storage and release including grid disconnected examples.

Solar thermal collectors have been developed based on a transpired solar perforated panel in which the paint has been pigmented with new materials which allow it to get much hotter (and so are more efficient) Initially combining the solar collector with a water tank has allowed buildings to reduce energy consumption by 80%. In the next phase of the programme glazed collectors are increasing solar efficiency further and are combined with a new solar thermochemical storage system which is thirty times more efficient that water and is switchable; the equivalent of a heat 'battery'.
Exploitation Route Demonstration buildings are being constructed in 2014/5. These include a grid disconnected garden pod, a low cost demonstration house and a solar thermal system retrofitted to a thirty year old shed.
Sectors Construction,Energy,Manufacturing, including Industrial Biotechology,Other

URL http://www.specific.eu.com
 
Description The SPECIFIC IKC was established in 2010 in the emerging technology area of functional industrial coatings with an initial £5m grant from EPSRC and TSB, £4m support from the Welsh Government together with support from Swansea University (£4m) and Industry (£6m). Its ultimate purpose is to nucleate and accelerate the creation of a new UK industry in disruptive coating technologies resulting in economic growth, initially through the use of 'Buildings as Powerstations'. This has been achieved in collaboration with established and nascent UK businesses by creating a critical mass of research and innovation expertise and establishing a National Centre of Excellence in Functional Coatings. As the value of products affected by Surface Engineering and Advanced Coatings in construction in the UK is £25bn pa, the potential for long term economic impact is significant. In its first full three years of operation the following is a summary of progress: • SPECIFIC established in a distinctive and flexible facility (Figure 1) incorporating labs, innovation spaces and production facilities, all operated at industry standard and available for third party access. • Three fully functioning re-configurable manufacturing lines in a bespoke clean room environment (Figure 1) • Growth from 10 to 137 staff and research students as of 9th July 2014. • Core industrial partner support of three multinationals (Tata Steel, NSG (Pilkington), BASF) £5m. • Collaboration projects with 32 companies of all sizes. • Leveraged research and development support of £40m. • CDT support to underpin SPECIFIC (EPSRC and WG support totalling £6.6m) to 2023. • 105 scientific papers, 95 conference presentations. • Intellectual asset portfolio including one trademark, 29 patent applications, 61 technology disclosures and know-how across the technology domain. • Two companies created (SPECIFIC Innovations and BIPV Ltd) and 1 licence (Hot Tile) agreed. • Over 2000 stakeholder visits to SPECIFIC and Materials Live outreach to promote SPECIFIC vision. • Training provided to 229 industrial employees (Work based learning). • 27 Doctoral graduates employed in partner industries. • 16 Doctoral graduates employed in partner University projects. • Two Building Scale Demonstrator Projects.
First Year Of Impact 2013
Sector Chemicals,Construction,Energy,Environment,Manufacturing, including Industrial Biotechology
Impact Types Cultural,Societal,Economic,Policy & public services

 
Description THE NET ZERO CARBON BUILDING STANDARD CALL FOR EVIDENCE
Geographic Reach National 
Policy Influence Type Contribution to a national consultation/review
URL https://www.nzcbuildings.co.uk/
 
Description A4B - InvestorG8 - BIPV
Amount £44,000 (GBP)
Funding ID IG8 - BIPV 
Organisation Academic Expertise for Business (A4B) 
Sector Public
Country United Kingdom
Start 09/2014 
End 12/2014
 
Description A4B Capital - SUPER
Amount £2,000,000 (GBP)
Organisation Academic Expertise for Business (A4B) 
Sector Public
Country United Kingdom
Start 09/2013 
End 12/2014
 
Description Adventures in Energy - A new concept for advanced large-scale energy storage: secondary batteries with seawater as open self-replenishing cathode
Amount £415,907 (GBP)
Funding ID EP/N013727/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2016 
End 12/2018
 
Description Brian Mercer Feasibility Award
Amount £30,000 (GBP)
Funding ID MF150163 
Organisation The Royal Society 
Sector Charity/Non Profit
Country United Kingdom
Start 01/2017 
End 12/2017
 
Description Crown Packaging Lecturer
Amount £75,000 (GBP)
Funding ID n/a 
Organisation Crown Packaging UK 
Sector Private
Country United Kingdom
Start 09/2015 
End 08/2018
 
Description EPSRC - PVTEAM
Amount £250,000 (GBP)
Funding ID EP/L017792/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 03/2014 
End 02/2018
 
Description EPSRC - SUPERGEN Supersolar Challenge
Amount £120,000 (GBP)
Funding ID EP/J017361/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 11/2014 
End 10/2017
 
Description EPSRC Centre for Doctoral Training in Industrial Functional Coatings: COATED2
Amount £2,613,845 (GBP)
Funding ID EP/L015099/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 05/2015 
End 11/2022
 
Description EPSRC Managed Call - Manufacturing Advanced Functional Materials - SPACE-Modules
Amount £2,513,161 (GBP)
Funding ID EP/M015254/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 03/2015 
End 02/2020
 
Description Energy Catalyst - Mid Stage - Round 2 - Hi-PROSPECTS
Amount £1,333,356 (GBP)
Funding ID 102470 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 04/2016 
End 03/2019
 
Description Exploitation models for SPECIFIC IKC
Amount £250,000 (GBP)
Funding ID 920037 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 12/2016 
End 03/2017
 
Description Grant Opportunities - SCION
Amount $2,000,000 (USD)
Organisation Bill and Melinda Gates Foundation 
Sector Charity/Non Profit
Country United States
Start 03/2017 
End 03/2018
 
Description HEFCW - Sêr Cymru - Sêr Solar
Amount £2,000,000 (GBP)
Organisation Higher Education Funding Council for Wales (HEFCW) 
Sector Public
Country United Kingdom
Start 09/2013 
End 08/2018
 
Description Industrial Support (cash) - BASF
Amount £150,000 (GBP)
Funding ID n/a 
Organisation BASF 
Department BASF Coatings
Sector Private
Country United Kingdom
Start 01/2016 
End 12/2021
 
Description Materials Science 2016 Venture Prize
Amount £25,000 (GBP)
Organisation Armourers & Brasiers 
Sector Private
Country United Kingdom
Start 01/2017 
End 12/2017
 
Description Newton Fund
Amount £5,000,000 (GBP)
Funding ID EP/P003605/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 10/2016 
End 09/2020
 
Description Research Fund for Coal and Steel
Amount € 150,000 (EUR)
Funding ID 425000 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 09/2015 
End 02/2019
 
Description SPECIFIC IKC Phase 2 - EPSRC £2M
Amount £2,000,000 (GBP)
Funding ID EP/N020863/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 04/2016 
End 03/2021
 
Description SPECIFIC Phase 2 - IUK - £2M
Amount £2,000,000 (GBP)
Funding ID 920036 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 04/2016 
End 03/2021
 
Description SPECIFIC+ - WEFO £15M
Amount £15,000,000 (GBP)
Funding ID 80892 
Organisation Government of Wales 
Department Welsh European Funding Office
Sector Public
Country United Kingdom
Start 04/2016 
End 03/2021
 
Description Senior Industrial Fellow - MPI/Tata Steel
Amount £189,000 (GBP)
Funding ID n/a 
Organisation Materials Processing Institute 
Sector Private
Country United Kingdom
Start 03/2016 
End 02/2019
 
Description Ser Cymru 2 - Fellowships
Amount £225,000 (GBP)
Funding ID 80761-SU-017 
Organisation Government of Wales 
Sector Public
Country United Kingdom
Start 12/2016 
End 11/2019
 
Description Ser Cymru 2 - Fellowships - SJ
Amount £93,000 (GBP)
Organisation Government of Wales 
Sector Public
Country United Kingdom
Start 12/2016 
End 11/2018
 
Description Ser Cymru Capital Equipment Grant - SER SOLAR CELL PRINTING AND STABILITY TESTING FACILITIES
Amount £152,436 (GBP)
Funding ID SCCEG-03 
Organisation Welsh Assembly 
Sector Public
Country United Kingdom
Start 11/2015 
End 03/2016
 
Description Ser Cymru Industry Fellowship - ASHIBA: ADVANCED HEAT STORAGE FOR INDUSTRIAL AND BUILDING APPLICATIONS
Amount £190,000 (GBP)
Funding ID NRNC08 
Organisation Welsh Assembly 
Sector Public
Country United Kingdom
Start 01/2016 
End 12/2017
 
Description Ser Cymru NRN - DEVELOPMENT OF STABLE ORGANIC SOLAR CELLS
Amount £58,800 (GBP)
Organisation Welsh Assembly 
Sector Public
Country United Kingdom
Start 09/2014 
End 08/2017
 
Description Ser Cymru NRN - IDENTIFYING DEGRADATION MECHANISMS AND DESIGN OF SYSTEMS FOR PEROVSKITE SOLAR CELLS IN OUTDOOR BIPV APPLICATIONS (SPECIFIC)
Amount £58,800 (GBP)
Funding ID NRN094 
Organisation Welsh Assembly 
Sector Public
Country United Kingdom
Start 10/2014 
End 09/2017
 
Description Solar Photovoltaic Academic Research Consortium II
Amount £5,000,000 (GBP)
Organisation Government of Wales 
Department Welsh European Funding Office
Sector Public
Country United Kingdom
Start 04/2016 
End 03/2021
 
Description Super Solar Hub - ADDRESSING THE SCALE UP CHALLENGES FOR FLEXIBLE PEROVSKITE SOLAR CELLS
Amount £151,000 (GBP)
Funding ID EP/J017361/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 11/2014 
End 04/2016
 
Description Supergen Solar Challenge - High resolution mapping of performance and degradation mechanisms in printable photovoltaic devices
Amount £1,035,857 (GBP)
Funding ID EP/M025020/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 08/2015 
End 07/2018
 
Description WG - Sêr Cymru - Sêr Solar
Amount £4,500,000 (GBP)
Organisation Government of Wales 
Sector Public
Country United Kingdom
Start 09/2013 
End 08/2018
 
Description WG NRN Research Grant
Amount £58,000 (GBP)
Organisation Welsh Assembly 
Sector Public
Country United Kingdom
Start 03/2015 
End 02/2016
 
Description G24 - Manufacture and Characterisation of DSSC 
Organisation G24 Power
Country United Kingdom 
Sector Private 
PI Contribution The team have applied novel rapid manufacturing and scaling processes to the materials set of G24
Collaborator Contribution G24 have assisted in analysing the results of the work in comparison to their standard processes
Impact Detailed commercial reports wrt to analysis of G24 materials and devices
Start Year 2014
 
Description GridDuck - Heated Floors 
Organisation GridDuck
Country United Kingdom 
Sector Private 
PI Contribution Working with GridDuck as lead partner, a project to examine the suitability of small heat loads for demand side response has been secured via BEIS's recent competition/tender "Demand Side Response for Non-Domestic Buildings". GridDuck and Upside Energy are both start-ups active in DSR. Phase 1 will commence in October, if successful, Phase 2 will use SPECIFIC's demonstration and scale up facilities. The work will include the heated floor tile as well as other heating loads.
Collaborator Contribution Working with GridDuck as lead partner, a project to examine the suitability of small heat loads for demand side response has been secured via BEIS
Impact none yet
Start Year 2017
 
Description IQE - Advanced Silicon-Perovskite Solar Tandem Cells (ASPEKTS) 
Organisation IQE Europe Limited
Country United Kingdom 
Sector Private 
PI Contribution Scoping of research projects, preparation of collaborative funding applications. Access to facilities and technical staff.
Collaborator Contribution Scoping of research projects, preparation of collaborative funding applications. EPSRC iCASE studentship. Access to facilities and technical staff.
Impact EPSRC iCASE studentship
Start Year 2017
 
Description Loughborough University - SUPERSOLAR Hub 
Organisation Loughborough University
Country United Kingdom 
Sector Academic/University 
PI Contribution Appointed as an associate member of the SUPERSOLAR Hub and attend technical meetings.
Collaborator Contribution The hub represents the interests of EPSRC in the area of solar energy research an provides a coordinating role.
Impact We have successfully applied for and received funding from a Challenge call issued by the hub
Start Year 2014
 
Description Palliser Engineers Ltd - Optical Transfer of Heat with Electrical and Light Output 
Organisation Palliser Engineers Ltd
Country United Kingdom 
Sector Private 
PI Contribution development of low cost CdTe to convert short solar wavelengths and utilise most of the remaining 41% to achieve temperatures of 150 deg C using novel optics. This enables absorption and adsorption heat driven technologies to be run efficiently for affordable air-conditioning and refrigeration. SPECIFIC will address the heat profiles needed to interface with thermochemical heat storage salts, including the interface and control aspects of applying their techniques for relatively short-term heat cycles in domestic or industrial conditions.
Collaborator Contribution Project leadership and research direction. Collaborative R&D.
Impact project work recently began - too early to report outcomes
Start Year 2017
 
Description SPECIFIC IKC - Phase 2 - Strategic Industry Partners 
Organisation BASF
Department BASF Coatings
Country United Kingdom 
Sector Private 
PI Contribution Development of a range of coatings for steel and glass to functionalise the building envelop.
Collaborator Contribution Access to industrial expertise, equipment, facilities and project steering. Direct funding of staff and doctoral students.
Impact multi-disciplinary collaboration involving: Materials Science / Engineering Physics Chemistry Architecture Technology Transfer and Commercialisation
Start Year 2016
 
Description SPECIFIC IKC - Phase 2 - Strategic Industry Partners 
Organisation Pilkington Glass
Country United Kingdom 
Sector Private 
PI Contribution Development of a range of coatings for steel and glass to functionalise the building envelop.
Collaborator Contribution Access to industrial expertise, equipment, facilities and project steering. Direct funding of staff and doctoral students.
Impact multi-disciplinary collaboration involving: Materials Science / Engineering Physics Chemistry Architecture Technology Transfer and Commercialisation
Start Year 2016
 
Description SPECIFIC IKC - Phase 2 - Strategic Industry Partners 
Organisation TATA Steel
Department Tata Limited UK
Country United Kingdom 
Sector Private 
PI Contribution Development of a range of coatings for steel and glass to functionalise the building envelop.
Collaborator Contribution Access to industrial expertise, equipment, facilities and project steering. Direct funding of staff and doctoral students.
Impact multi-disciplinary collaboration involving: Materials Science / Engineering Physics Chemistry Architecture Technology Transfer and Commercialisation
Start Year 2016
 
Description SPECIFIC IKC - Strategic Partners 
Organisation BASF
Department BASF Coatings
Country United Kingdom 
Sector Private 
PI Contribution TBC
Collaborator Contribution Secondments of senior staff to SPECIFIC IKC: CEO of SPECIFIC IKC - Mr Kevin Bygate Industrial Director - Mr Paul Jones Industrial Postgraduate Supervisor - Dr Jon Elvins SPECIFIC IKC Steering Committee and Board - Simone Vooijs: Director Technical, Downstream Operations, Tata Steel Europe Funding for Engineering Doctorate students and PDRAs
Impact TBC
Start Year 2011
 
Description SPECIFIC IKC - Strategic Partners 
Organisation NSG Nippon Sheet Glass Pilkington
Country Japan 
Sector Private 
PI Contribution TBC
Collaborator Contribution Secondments of senior staff to SPECIFIC IKC: CEO of SPECIFIC IKC - Mr Kevin Bygate Industrial Director - Mr Paul Jones Industrial Postgraduate Supervisor - Dr Jon Elvins SPECIFIC IKC Steering Committee and Board - Simone Vooijs: Director Technical, Downstream Operations, Tata Steel Europe Funding for Engineering Doctorate students and PDRAs
Impact TBC
Start Year 2011
 
Description SPECIFIC IKC - Strategic Partners 
Organisation Tata Steel Europe
Country United Kingdom 
Sector Private 
PI Contribution TBC
Collaborator Contribution Secondments of senior staff to SPECIFIC IKC: CEO of SPECIFIC IKC - Mr Kevin Bygate Industrial Director - Mr Paul Jones Industrial Postgraduate Supervisor - Dr Jon Elvins SPECIFIC IKC Steering Committee and Board - Simone Vooijs: Director Technical, Downstream Operations, Tata Steel Europe Funding for Engineering Doctorate students and PDRAs
Impact TBC
Start Year 2011
 
Description STRIP Company Contribution 
Organisation BASF
Country Germany 
Sector Private 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description STRIP Company Contribution 
Organisation European Coil Coating Association (ECCA)
Country Belgium 
Sector Charity/Non Profit 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description STRIP Company Contribution 
Organisation LUX-TSI
Country United Kingdom 
Sector Private 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description STRIP Company Contribution 
Organisation NSG Nippon Sheet Glass Pilkington
Country Japan 
Sector Private 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description STRIP Company Contribution 
Organisation Tata Steel Europe
Department Cogent Power
Country Canada 
Sector Private 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description STRIP Company Contribution 
Organisation Tata Steel Europe
Country United Kingdom 
Sector Private 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description STRIP Company Contribution 
Organisation Tata Steel Europe
Country United Kingdom 
Sector Private 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description STRIP Company Contribution 
Organisation Tata Steel Europe
Country United Kingdom 
Sector Private 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description STRIP Company Contribution 
Organisation Tata Steel Europe
Country United Kingdom 
Sector Private 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description STRIP Company Contribution 
Organisation Vector International
Country United Kingdom 
Sector Private 
PI Contribution 50+ MRes Students enrolled to date 50+ EngD Students enrolled to date
Collaborator Contribution Co-Funding for MRes / Engineering Doctorate students, including fees, stipend, travel and consumables.
Impact Many students have graduated some of which have gained employment with the collaborating companies or have remained with the research team as post-doc. The collaborating companies have benefited through improved materials, processing and technological innovations.
Start Year 2010
 
Description Solar Press - OPV Scale-up 
Organisation Solar Press
Country United Kingdom 
Sector Private 
PI Contribution tbc
Collaborator Contribution Supply of specialist equipment at highly preferential rates
Impact tbc
Start Year 2013
 
Description eight19 (SUNRISE) 
Organisation Eight19
Country United Kingdom 
Sector Private 
PI Contribution development of collaborative research funding applications stability and processing of organic solar cells
Collaborator Contribution development of collaborative research funding applications
Impact funding applications
Start Year 2017
 
Company Name BIPV Co 
Description A company dedicated to converting passive building envelope into energy generating assets. 
Year Established 2013 
Impact Developed three PV products for different applications for converting buildings into power stations. Has raised over £3m in private investment. Currently employs around 13 people in South Wales.
Website http://www.bipvco.com/
 
Company Name SPECIFIC Innovations Ltd 
Description A special purpose vehicle set up to facilitate and expedite the commercialisation of innovations arising from the SPECIFIC IKC and affiliated projects/programmes whilst mitigating risk for Swansea University. 
Year Established 2014 
Impact One technology licence has been granted to a commercial third party.
 
Description APEX II Meetings 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact UK and India are both rising stars in the promotion of Solar Energy viz. direct generation of electricity from the Sun called photovoltaics (PV). In the UK, PV is seen as a key technology to reduce the carbon footprint of electricity generation. It is also a necessity if future building standards are to be met, which will require on-site generation. PV is the only way to meet this to date. DECC has announced recently 'The Solar Strategy' which promotes the deployment of solar technologies on the existing buildings. In India PV has the added benefit that it is a highly scalable technology that can be deployed to support the grid infrastructure and indeed can be built possibly faster than conventional power plants through terrestrial solar farms and BIPV sectors. The current APEX program stems from the strategic move by the governments of the UK and India who jointly identified Solar Energy as an area of significance in providing solutions to the problem of meeting future energy needs. This partnership was aimed at linking the strengths of both countries to enhance the research capabilities of both nations.
APEX had been focusing on the development of new functional materials, device structures, materials processing and engineering of photovoltaic modules utilising excitonic solar cells (ESCs). These are a class of nano-structured solar cells based on organic nano-composites and dye-sensitised nanocrystalline TiO2 materials. The current state-of-the-art power conversion efficiency (PCE) figures ~11.4% and ~9.2% has been achieved in liquid junction dye sensitized solar cell (DSSC) and organic solar cells (OSC), respectively. In the pursuit of achieving high efficiency solid state DSSC, a new breakthrough has been established recently through our Oxford group (Prof. Henry Snaith) who achieved >17% efficient solid state devices using pervoskite solar cells. Thus, the APEX team enjoys the exceptional, world-class capability in Excitonic PV technology. The success of the program had been through its novelty, innovation and cutting edge R&D capability it possesses.
Year(s) Of Engagement Activity 2015,2016
URL http://gtr.rcuk.ac.uk/projects?ref=EP/M023532/1
 
Description Co-Innovate - Cardiff 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Industry/Business
Results and Impact Presentation of the buildings as power stations concept inviting industry to collaborate to deliver impact from research
Year(s) Of Engagement Activity 2017
 
Description Green Growth Forum 2016 - Cardiff - Kevin Bygate Invited to speaker 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Policymakers/politicians
Results and Impact CARDIFF: Political and economic leaders from around the world shared their collective spirit to capitalize on green growth and deliver on the Paris Agreement goals, at the International Green Growth Forum in Cardiff, UK today.

Organized by the Welsh Government in collaboration with The Climate Group, the International Green Growth Forum is one of the first global events since the COP21 climate talks last December where the Paris Agreement was announced.

Focused on how innovative sub-national government policy and smart business action can accelerate the transition to a thriving low carbon economy, the Forum opened with a keynote address from Edwina Hart MBE, C St J, AC / AM, Welsh Minister for Economy, Science and Transport and an opening session with Peter Davies, Chair of Climate Change Commission for Wales and Master of Ceremonies, who cut straight to how state and regional governments in particular are at the level which "can make the most difference on the ground".

Simon Upton, Environment Director, OECD, said this forward-thinking action from governments and business is the "biggest opportunity of our age", marking the December 12 date of the Paris Agreement as one which will be remembered as the historic moment "we decide to tackle climate change".

The opportunity lies most of all, the Director believes, in the rapidly falling costs of clean energy technologies, which will "drive growth whilst reducing carbon emissions". Alluding to the rise of renewables in the face of increasingly redundant fossil fuels he affirmed: "Tomorrow's economy won't be built using today's tools."

Sir David King, UK Government Special Representative for Climate Change, who we interviewed for Climate TV earlier this week, also spoke of the rapid adoption of low carbon technologies being witnessed around the globe, pointing to South Africa's ambitious plans to build 9.6 gigawatts of solar capacity by 2030.

But investing in clean energy does not just bring bottom line benefits; it also reduces business risk, according to Andrew Griffiths, Nestlé UK Environmental Sustainability Manager, who stressed how "food manufacturing businesses are particularly susceptible to climate change".

Governments around the world also have similar incentives to act on climate as businesses, said Marta Subirà i Roca, Secretary for Environment and Sustainability, Government of Catalonia (pictured). She explained that state and regional governments "are key" to delivering the Paris Agreement, while also benefitting from being in a "pivotal position" to collaborate effectively with the business world to achieve this.

"Catalonia is deeply committed to action on climate change", Marta Subirà i Roca stated, but action at scale needs buy-in from all: "Accelerating green growth relies on developing partnerships with the private sector."

COLLABORATE FOR ACTION

Mark Kenber, CEO, The Climate Group, chaired a practical discussion on how exactly this business and government collaboration will work. "Doing what we're doing, faster, doesn't get us there" he warned, rather strategic cross-sectoral links will afford us the scale we need to drive down emissions.

But while many leading governments are already working with like-minded companies who know the only way to move forward is low carbon growth, this work must also extend to these leaders' customers and citizens to be most effective, according to Niall Dunne, Chief Sustainability Officer, BT. "The narrative must be around empowering communities - it's more powerful than green growth alone," he said.

Illustrating this multi-layered approach in action, the CSO explained how BT redesigned its modems to fit in letter boxes - an innovation which has saved 80,000 miles of customers traveling to post offices to pick up parcels.

Ken Alex, Government of California offered the policy perspective, outlining how the US state - and suggesting other sub-national governments around the world such as Wales have similar agendas - has powered low carbon regulation such as LED lighting into action, which is sending the right signal to innovative new companies. "Through the regulatory system you can drive change", he explained. "California's energy storage regulation has attracted companies from around the world to create solutions."

NEW ENERGY

In the afternoon, four parallel workshops honed in on issues around low carbon growth, including climate-resilient infrastructure and green investment. Hosting a 'Building for the Future' session on the transition to clean energy systems, Emily Farnworth, Campaign Director, RE100, The Climate Group discussed renewable uptake with corporate, policy and academic leaders including representatives from the governments of North Rhine-Westphalia and Catalonia, and Nestlé UK.

Nestlé is a member of RE100, a global collaborative initiative of the world's most influential companies committed to 100% renewable power, led by The Climate Group in partnership with CDP. This week, Tata Motors Limited, India's largest automobile manufacturer, became the second Indian company to join RE100.

Joan França, Specialist in International Relations and Sustainability for the State of Rio de Janeiro - who participated in the 'Building for the Future' session - outlined how the State of Rio is integrating climate resilience into their strategy for Olympics this year and is working with businesses to support growth while reducing emissions.

Bryan Jacob, Campaign Director, EP100, The Climate Group also moderated a workshop on how business can achieve greater resource efficiency. During the session, Andreas Knobloch, Director of Alliances, Phillips Lighting, explained how using "connected systems" to control lighting can maximize productivity, and Kevin Bygate, CEO, SPECIFIC, introduced the concept of seeing buildings as power stations, which can eventually produce more power than they consume.

Concentrating on the economic benefits of increased energy productivity, Mareike Schiffki, Government of Baden-Württemberg outlined the importance of decoupling energy consumption from economic development, with Delphine Gilbert, Regional Director, Veolia UK, Industrial Customer, offering an example of how incentives had helped drive zero waste to landfill for the leading environmental services company.

The Climate Group and Welsh Government's successful International Green Growth Forum proved today that with the Paris Agreement just three months behind us, whatever happens at the international level, political and business leaders from around the world are ready to deliver on its goals and invest in a future that is cleaner, safer and more prosperous for everyone.
Year(s) Of Engagement Activity 2016
URL http://www.theclimategroup.org/what-we-do/events/international-green-growth-forum/
 
Description IKC Directors Workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact Sharing of IKC best practice
Year(s) Of Engagement Activity 2012,2013,2014,2015,2018
 
Description InnovateUK/DFID - Competition Pitch - Buildings as Power Stations Collaborative R&D 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Presentation of the 'buildings as power stations' concept inviting industry to collaborate to enable translation of research into impact
Year(s) Of Engagement Activity 2017
 
Description International Conference: Smart Energy Regions - Cardiff, February 2016 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact contributions on sustainable regional approaches to:
> Urban planning and infrastructure;
> Energy policy, strategy, building standards and regulations;
> Building energy demand and supply, and low carbon technologies;
> Energy retrofitting of the existing built environment;
> Energy design tools for the built environment.
Year(s) Of Engagement Activity 2016
URL http://www.smart-er.eu/content/call-abstracts-international-conference-smart-energy-regions-cardiff-...
 
Description Iron & Steel Society - Board Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Industry/Business
Results and Impact The Iron and Steel Society's activities encompass all professional, technical and educational aspects of the Steel Industry and whole supply chain as well as other strategic considerations of steel. This is achieved by interaction with all parties related to the Iron and Steel Industry including:

Institute of Materials, Minerals and Mining Iron and Steel Society members, UK and Worldwide
Iron and steel industry personnel
Iron and steel industry suppliers and customers
Plant builders
Universities and younger members of the Institute
Iron and steel related institutes and learned societies both international and domestic
UK Steel Association and member companies
External bodies relevant to iron and steel, both international and domestic.

The scope of the Society also includes communications with other divisions and external bodies on all aspects involving iron and steel. These would include, for example, refractories, mining, automotive and general applications of steel, plant engineering, environmental considerations, recycling and Government Foresight.

The aim of the Iron and Steel Society is:
To provide value and support to the iron and steel Industry
To provide value and support to individual members of the Institute with a particular interest in iron and steel both in the UK and worldwide.
To promote a positive image of iron and steel.
To promote exchange and development of Technology through the organisation of conferences, seminars and meetings.
To carry out self-funding activities in order to achieve the above aims.
Year(s) Of Engagement Activity 2015
URL http://www.iom3.org/iron-steel-society
 
Description KEYNOTE LECTURE - 228th Electrochemical Society Meeting, Phoenix AZ, USA (October 2015) - G. Williams, P. Dodds, and P. Ansell: Corrosion Protection of Galvanized Steel Using Smart-Release Inhibitive Pigments Containing Organic Anions 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Over 2,080 people from 46 different countries attended the 228th ECS Meeting in Phoenix, Arizona, October 11-15, 2015. This was ECS's first return visit to Phoenix since 2008. Participants could choose among 1,977 presentations.
Year(s) Of Engagement Activity 2015
URL http://www.electrochem.org/redcat-blog/highlights-from-the-228th-ecs-meeting/
 
Description Policy Forum for Wales - Priorities for the energy sector in Wales - investment, infrastructure and devolved powers 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Policymakers/politicians
Results and Impact This conference will be an opportunity to discuss priorities for energy policy in Wales as powers to approve energy projects up to 350MW are due to be devolved to the Welsh Government.

Delegates will assess the potential for Wales to take a lead on low-carbon energy, and the priorities including planning reform and steps to secure private and European Commission funding.

Planned sessions also look at challenges for the future of energy distribution including the development of smart grids and improving capacity to support increased volumes of renewable energy and distributed generation.

The conference will bring together key policymakers from the European Commission, and Welsh and UK Governments with stakeholders across the energy sector as well as energy-intensive businesses, consumer groups, environmental organisations, local authorities, academics, and others with an interest in these important issues.
Year(s) Of Engagement Activity 2015
URL http://www.policyforumforwales.co.uk/forums/event.php?eid=1139
 
Description SACW (Science Advisory Committee for Wales) -Cardiff University Council Chamber - Kevin Bygate - Science Board 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact SACW reports directly to the Chief Scientific Adviser rather than to Ministers and has no statutory or financial responsibilities. It provides advice on science, technology, engineering and mathematics issues.

The Council first met in December 2010 after the appointment of the first Chief Scientific Adviser to advise the Welsh Government on science issues across departments. Its purpose is to bring a range of expertise in support of the adviser, and SACW has members with both commercial and academic knowledge in a range of subjects.
Year(s) Of Engagement Activity 2012
URL http://sciencewales.org.uk/about/?lang=en
 
Description SUPERGEN Solar Energy Challenge - Hilton Birmingham Metropole Hotel - Kevin Bygate 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact Introduction
The Research Councils' Energy programme invites expressions of interest from eligible individuals to attend a workshop to be held at the Hilton Birmingham Metropole, B40 1PP on 13 March 2012. The aim of this workshop is to bring together the various academic and industrial solar energy communities to scope the issues for an open SUPERGEN Challenge call to support research projects that will hasten the development of the next generation of solar energy technologies. The Energy programme has allocated up to £5M to support a call for research arising from theworkshop.

The Research Challenge
The UK Government has targets for the reduction in CO2 emissions of 80% by 2050. For these targets to be achieved a significant move away from fossil fuels across all parts of the energy sector is required. Solar energy is expected to play a significant role in meeting these targets. The RCUK energy programme is looking to invest in a SUPERGEN challenge activity in solar energy that focuses on overcoming the fundamental research challenges around the next generation of solar energy technology. It is intended that this workshop will identify and prioritise the challenges that lie within the Research Councils remit and that can be addressed through a SUPERGEN challenge call.
It is acknowledged that this activity should not act in isolation from other solar energy research being undertaken in the UK. As such applicants should demonstrate an understanding of the wider research landscape in this area, and the issues that solar energy research faces, when filling in their forms.

The workshop
The workshop will be a one day event that aims to scope the challenges that face the development of solar energy technologies. The outputs of the workshop will be used to inform a subsequent SUPERGEN challenge call. The Workshop will bring together a balance of participants from academia and industry with interests in the engineering, environmental, social, economic and political aspects of solar energy. Participants
will discuss and capture the issues around the sector and will identify multidisciplinary challenges that can be addressed in the SUPERGEN challenge call. Successful applicants to the EOI call will receive further information before the event.

Societal Implications and Ethical Issues
It is recognised that non-conventional energy has the potential to raise societal, ethical, philosophical and legal issues, and opportunities also exist for research in areas outside the natural sciences and engineering, for example policy and public acceptance. The involvement of researchers from these other fields is essential to ensure that scientific research develops in a societal framework and that any ethical, legal and societal issues that are raised are fully explored as the area develops.
Year(s) Of Engagement Activity 2012
URL https://www.epsrc.ac.uk/funding/calls/supergensolareoi/
 
Description The Chartered Institution of Building Services Engineers (CIBSE) Conference 2015 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact The 2015 conference programme focused on the building performance sector and follows the story from design, construction, maintenance and operation of buildings and the systems that support them.
Year(s) Of Engagement Activity 2015
URL http://www.cibse.org/cibse-conference-2015/conference/conference-programme