Core Capability for Chemistry Research at the University of Liverpool

Lead Research Organisation: University of Liverpool
Department Name: Chemistry

Abstract

This grant will underpin the Chemistry Department's core research capability by upgrading capital equipment in four key areas of Chemistry instrumentation, nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray structural analysis and atomic level microscopy. These techniques provide the ability to characterise the new chemicals and materials produced in the Department of Chemistry at Liverpool, to determine their atomic structure and to examine their properties, supporting research activity across the entire Chemistry research portfolio. The new facilities will provide access to state of the art instrumentation for Chemistry academics, early career research staff, post-doctoral research workers and research students, enhancing the quality of the research carried out. Replacement of obsolete instrumentation and extending the capability of the instrumentation base will enhance sample throughput and productivity, permit unstable samples to be analysed, reduce the need for external analysis of samples and allow more complex analysis to be performed. Research programmes relying on these techniques include Materials Research, research into Green Catalysis and new Battery Materials, Drug Discovery and Drug Delivery, and the design of Functional Interfaces. Upgrading the instrument base will also ensure the training provided to research students remains compatible with the instrumentation they will meet in industry, supporting the skills needed by employers and the UK Chemical Industry.

Planned Impact

This proposal represents an ambitious project to provide an open distributed network of instrumentation and equipment across six of the N8 Research Partnership universities (Durham, Leeds, Liverpool, Manchester, Sheffield, and York) that will provide capacity to meet current and future chemistry research requirements. This will be achieved through the delivery of improved analytical facilities for chemical and materials characterisation, building on Chemistry's current capability with a co-ordinated approach to provide more specialist equipment. The funding will be used to refresh and upgrade the instrumentation available at Liverpool, leading to improvements in the capacity and levels of service that the Department of Chemistry can offer. Providing our researchers with ready access to state-of-the art analytical equipment is essential if the UK chemistry community is to continue to produce world-leading research. The research grants underpinning the bid vary from blue-skies academic research to applied and industrially co-funded projects, and the 'Pathways to Impact' that have been identified for these apply equally to this equipment bid.

Liverpool has an excellent record of bringing business interests and academic research together to drive economic and scientific success. The Department has strong funding links with many partners in the commercial sector, including Acal, Adisseo, Astrazeneca, Bayer, BP, Mristol-Myers Squibb, BNFL, GSK, Ineos Fluor, Iota Nanosolutions, Johnson Matthey, Lucite International, Merck, Millennium, Pfizer, SAFC Hitech and Sanofi-Aventis as well as with the charitable sector, including drug discovery charities, the Medicines for Malaria Venture, Wellcome Trust, the MRC and the IVCC. For example, the Centre for Materials Discovery and the recently announced Materials Innovation Factory (a £45M project jointly supported by the Government's Research Partnership Investment Fund, Unilever and the University of Liverpool) build on strong links with Unilever to provide a unique suite of facilities for Materials research, open to Industrial partners. Additional investment to provide state of the art instrumentation and equipment will strengthen these partnerships and facilitate new collaborations. In addition the Department has an extensive set of interactions with SMEs, who will benefit from the proposed equipment investment through joint research programmes, direct hosting of SME researchers and by the provision of enhanced analytical services.

A principal objective of the N8 Research Partnership is to create a culture of collaboration. The increased coordination underpinning this proposal will enable the equipment purchased to have the maximum benefit to individual departments and to the wider research community. The proposed collaboration will enable partner universities to provide cover and back-up services in the event of a major breakdown in service provision at a single university. An asset-sharing programme is being developed to create an integrated database of assets that are available for the use of researchers throughout the N8. Through this system, equipment and instrumentation funded through this application will be leveraged for a greater impact across both the individual department and the N8 organisation than if it was provided to a single institution.

Provision of new equipment and instrumentation will have a direct impact on the quality of training given to research staff. As available equipment and associated technologies develop, there is a continued need for researchers to have access to, and be fully trained in, the latest techniques. This grant will allow us to continue to train chemists, on state of the art equipment, to a standard that enables them to compete on national and international levels and to support UK industry.

Publications

10 25 50
publication icon
Gerrard N (2020) Water Dissociation and Hydroxyl Formation on Ni(110). in The journal of physical chemistry. C, Nanomaterials and interfaces

publication icon
Gerrard N (2020) Formation of Linear Water Chains on Ni(110). in The journal of physical chemistry letters

publication icon
Lin C (2020) Hydration of a 2D Supramolecular Assembly: Bitartrate on Cu(110). in Journal of the American Chemical Society

publication icon
Seufert K (2019) Porphine Homocoupling on Au(111) in The Journal of Physical Chemistry C

publication icon
Gerrard N (2019) Strain Relief during Ice Growth on a Hexagonal Template. in Journal of the American Chemical Society

publication icon
Slater A (2018) A solution-processable dissymmetric porous organic cage in Molecular Systems Design & Engineering

 
Description This grant upgraded the NMR, mass spectrometry and surface analysis facilities in the department of Chemistry and underpins the characterisation of all the molecular species developed in the Department. These materials have applications across all areas of the Department's research activity, ranging, for example, from the development of new anti-malarial agents and inhibitors for human alpha-methylacyl CoA reacemase (AMACR) for the treatment of prostate cancer, through to new catalysts for the hydrogenation of imines.
Exploitation Route New materials developed by the Department will be investigated for commercial potential.
Sectors Chemicals,Pharmaceuticals and Medical Biotechnology

 
Description The impact of this equipment grant will be on all aspects of the Department's research and impact portfolio over the next 10 years or longer.
First Year Of Impact 2013
Sector Chemicals,Pharmaceuticals and Medical Biotechnology