EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

Lead Research Organisation: University of Bristol
Department Name: Aerospace Engineering

Abstract

The ACCIS CDT will continue to address the EPSRC's goal of Developing Leaders in the key area of advanced materials under the EPSRC priority area of Materials Technologies. The underpinning philosophy will be to train the next generation of pioneers in composites technologies at the interface between engineering, life sciences, physics and chemistry, noting that within ACCIS, composites are defined as synergistic combinations of materials which may exhibit multifunctional attributes.

The need for the ACCIS CDT is now even more important strategically than was the case for the initial award. The utilisation of composites is growing at an unprecedented rate, as illustrated by the significant UK technological contribution to both the Boeing 787 and Airbus A350 with composite airframes, the need for rapid development of renewable energy (wind turbine blades) and the nascent interest in large scale production of automotive components by organisations such as McLaren and BMW. The need for lightweight, high performance, multifunctional materials is a key element in meeting the goals of a sustainable future. Thus, industrial usage is within a period of exponential rise. Furthermore, composite materials has been recognized as one of the key industries by which the UK can seek to rebalance the economy towards export driven high value manufacturing.

We intend to build upon our strong existing platform by further increasing our international engagement and by attracting elite home and overseas students to widen the pool of highly skilled labour for UK industry, supported by a combination of industrial and scholarship funding.

Planned Impact

The chief impacts are twofold:

1. Supply of doctoral level engineers trained to the very highest standards in advanced composites. They will take up positions in industry as well as academia.
2. Development of next generation advanced composite materials and applications for wealth creation in the UK.

Other important impacts are:

3. Enhanced UK reputation as a world leading centre in advanced composites that attracts inward investment and export opportunity.
4. Attracting elite overseas students, enhancing the UK's global reputation for excellence in Advanced Composite materials and their applications and widening the pool of highly skilled labour for UK industry.
5. Engaging with local schools and media, to disseminate, enthuse and raise the profile of Engineering to school children and to the wider public.

Publications

10 25 50