Wearable and flexible technologies enabled by advanced thin-film manufacture and metrology

Lead Research Organisation: University of Oxford
Department Name: Materials

Abstract

Wearable technologies such as smart glasses have recently caused much excitement in the business and technology spheres. However, these examples use relatively conventional technologies. The real breakthrough in wearable technologies will come when we can manufacture materials and components that are flexible and non-intrusive enough to be integrated into everyday items, such as our clothes. The main challenges to achieving this are the lack of reliability, performance limitations of (opto)electronics on flexible substrates, and the lack of flexible power sources. Much of the necessary device technology exists in some nascent form; our proposal will provide the technological innovation to allow its manufacture in a form compatible with wearable technology. In this project we aim to solve a key technological challenge in wearable technologies, namely that of scalable and cost-effective manufacturing by taking advantage of the following areas of UK technological excellence in components and scale-up technologies:
1) The assembled consortium has an emphasis on inventing and demonstrating the key wearables technologies required on flexible substrates for displays, energy harvesting and sensing.
2) The consortium consists of key researchers in the fields of modeling prediction, metrology, systems integration and design for reliability, all required to complement the device engineering.
3) Importantly, by integrating, right from the word go, the aspect of Roll-to-Roll (R2R) scale-up of manufacturing such flexible technologies, we will create the manufacturing know-how to allow fundamental science to translate into manufacturing.

The deposition processes for all wearables face similar challenges such as low material yield, high waste (important for functional films where minimizing waste saves costs substantially) and lack of in-situ process monitoring. Additionally, for our targeted applications, there is currently no scalable cost-effective manufacturing technology. Roll-to-roll processing fulfills this crucial need and our aim will be to enable this scalable manufacturing technology for inexpensive production on flexible substrates, an area very much underexplored in terms of advanced functional materials, but one with huge potential.

Planned Impact

In its latest report on manufacturing in the UK, the Foresight report concludes that "Manufacturing is no longer about 'production'"and that "39% of UK manufacturers with 100 or more employees derived value from 'manufacturing services' related to their products." These are important numbers and no technology embodies these aspects more than wearable and flexible technologies. By 2024, the market for wearable technology will reach $70 billion, according to IDTechEx. Initially photovoltaics, OLEDs and e-paper displays will grow rapidly, followed by thin-film transistor circuits, sensors and batteries. Even agriculture is expected to be a growth sector for wearables, as outlined in another IDTechEx report, "Wearable Technology for Animals 2015-2025," which covers the needs, technologies and markets of wearable electronics for livestock, pets and wild animals. It forecasts that the global market will grow from $910 million in 2014 to $2.6 billion in 2025. Thus enabling the manufacture of these devices and systems can produce huge economic benefits to the UK economy. In addition to our industrial partners, there are many other UK firms that we plan to engage with such as Oxford & Paisley, Cambridge Materials, Sheffield Materials etc. There is also significant activity in machine development in the UK (Bobst Manchester, Timpson, Double R Controls, Ultraprecision Engineering, Gencoa etc.), film converting (Ultimet, Camvac, Tertrapak) and substrates (Innovia films, DuPont Teijin etc.), all of whom would experience benefits when we enable the manufacturing of truly wearable and flexible technologies. Moreover, the provision of wearable technologies provides opportunities for follow-on services such as automatic health monitoring with automated links to the medical professions, which could add significant value to the UK economy.
As EPSRC's own Materially Better report outlines the UK is particularly strong in key areas of research such as in the understanding of complex inorganic materials, organic electronics, theory and simulation of materials and functional devices. In our project, we address each of those issues. Thus, this is evidence that our highly interdisciplinary proposal plays to the strengths of UK's Advanced Materials base. The call document states "to enable advanced functional materials to thrive in the industrial world, we need to understand the integration of these materials with components, the demands for performance and reliability, and the requirements for new assembly processes and manufacturing techniques to realise this." Our proposal addresses these very needs in the context of wearable and flexible technologies by marrying materials development with upscaling processes suitable for large area deposition. The general technological know-how that we will develop is however applicable to other industries such as antireflection coatings, smart windows and rigid solar cells that are outside of wearable and flexible technologies and we will actively seek to engage with them.

Organisations

Publications

10 25 50

publication icon
Ali UE (2022) A Universal Pick-and-Place Assembly for Nanowires. in Small (Weinheim an der Bergstrasse, Germany)

publication icon
Armitage B (2020) Conducting polymer percolation gas sensor on a flexible substrate in Journal of Materials Chemistry C

publication icon
B.F. Porter, (2016) Additive Nanomanufacturing

publication icon
Benjamin Francis Porter (2017) Janus Interface Nanoparticle Assembly in Nature Nanotechnology

publication icon
Benjamin Porter (2016) Additive Nanomanufacturing

publication icon
Broughton B (2017) 38-4: Solid-State Reflective Displays (SRD ®) Utilizing Ultrathin Phase-Change Materials in SID Symposium Digest of Technical Papers

publication icon
Brückerhoff-Plückelmann F (2021) Chalcogenide phase-change devices for neuromorphic photonic computing in Journal of Applied Physics

 
Title E\PCOS 2022 - Art & Engineering - An exhibition of visual art 
Description For E\PCOS 2022 at Wolfson College Oxford, Artist in Residence, Méadhbh O'Connor, in collaboration with Harish Bhaskaran and his research group, is delighted to present an exhibition of visual art. This interim exhibition by Méadhbh marks an artist's impression from the many conversations shared on creativity, the role of the engineer in society and on teamwork. The genesis of anything new - a tool to be used, a work of art to be observed, an idea to be put into action - begins with the act of creation. Creativity, the fusion of two or more previously unrelated things, a reconfiguring of existing parts, the constant cycle of revision, improvement and invention, lies at the core of human endeavour. There is an association between high creativity and engineering that is sometmes not apparent in the minds of those outside the field. We want to change this perception and have begun with the help of an artst. Plotted in various points throughout the conference venue, the artworks take the form of textiles, flags, seating and abstract sculptures made using materials such as ribbon cable, copper and aluminium tape, cable sheathing, composite scientific and abstract imagery, Rexroth components and other parts. The work is intended as a playful take on the lab environment, the Advanced Nanoscale Engineering Group as a team in the historic setting of Oxford and creativity as an enduring, evolving process. 
Type Of Art Artistic/Creative Exhibition 
Year Produced 2022 
Impact Discussion, requests for artworks to utilised further within the University as a whole. 
 
Description The program has been completed and we are compiling the ongoing outcomes of this funded work, and completing it through COVID-related delays.
The key findings so far for this are:
1) World first areas: Ultimate Limit of Scaling Nanoscale Devices, Flexible Phase-Change Memory; Truly Flexible 2D materials, Conducting Polymer Networks at the Percolation Threshold for Chemiresistors on Flexible Substrates , On-chip photonics synapse; Thermo-electric Energy Harvesting; Organic Photovoltaic Energy-Harvesting; Enhanced printing resolution on flexible substrates with self-assembled monolayer surface modification, Dynamically tunable color filters based on Phase change materials, Patterned metallisation process; Roll-to-roll manufacture of OTFT sensors based on PVDF; Infrared Phase-Change Metadevices with in-situ Switching; Towards A Phase-Change Metamaterial CMY Subtractive Display; Phase-Change Reflectarrays; In-situ Film Growth Monitoring; High-throughput manufacture of flexible electronics; Holographic Display Concepts.
2) Interlock research areas; leveraging fundings: EPSRC Manufacturing Fellowship, EC ICT31, EPSRC IAA, Global Challenge Research Fund
3) Staffing complete - all postdoc positions filled in
4) Closer cooperation with Industrial Partners. The number of engaged industrial partners increased to 20. New, active partners: PragmatIC, Eckersley O'Callaghan, Plasma App Ltd, M-Sov Ltd, Sony.
5) In the past year thhere have been the following outcomes:
Metrology: Stress and Strain at the Nanoscale; Metrology using mass maufacturable probes - high resolution conductive AFM measurements enabled by phase change material coated probes.
Nanomanufacturing: Bilayer lithography - a flexible way to control the mechanical force to avoid under-cutting and over-cutting. the approach is friendly to flexible substrates, becuase only water gets involved in the fabrication process; Ammonia gas sensor printed on flexible stubstrates - printed conducting polymer based chemiresistors approach detection of 1.6ppm for ammonia gas.
Scale-Up and R2R Processing: In-line patternered metallization - High-throughput =25m/min roll-to-roll deposition of electrode materials for flexible devices. Applied various devices in WAFT: OTFTs, thermoelectrics sensors, metamaterials. Route to high-resolution (potentially EBL resolution), using surface modification, has been identified and patented; OTFT-Based sensor circuits - Circuits based on OTFTs manufactured by high-throughput R2R evaporation process coupled to flexible sensors for biomedical chemicals and ECG measurement; Thermoelectric generators (TEGS) - Deposition of thin film TEGs on polymer substrates which, in array, would produce enough power to run e.g. OTFT sensor circuit.
Flexible electronic devices: multiple papers published.ChAMP/WAFT Collaboration Funds - "Scalable Flexible Ion sensors for Wearable Electrolyte Monitoring", £23,500 & "Inline patterning of thermoelectric devices onto flexible substrates: a solution to large area manufacturing of wearable electronics", £18,350
Smart2Go: Flexible thermoelectric results from WAFT fed into project funded from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 825143, project Smart2Go (€4 million)
Chemiresistive vapour sensors based on percolation networks: By using a percolation network of conductive polymers a significantly higher sensitivity can be achieved compared to more traditional conductive polymer thin film based sensors. Using a percolation network of polypyrrole we've achieved sensitivities as low as 9 ppb ammonia.
Using the same percolation principle high sensitivities analyte materials can also be achieved using different conductive polymers or for example the metal-organic-frameworks shown here.
Flexible Memory Devices: Development of non-volatile memories for flexible electronics applications. Led also to Innovate UK grant and follow-on PhD studentship funded by PragmatIC (starting 2020).
Highly sensitive vapour sensors were also successfully created on flexible substrates.
A small integrated device, capable of measuring the signal of four chemiresistive sensors, as well as temperature and humidity sensors was developed. This demonstrator uses Bluetooth to communicate with a mobile phone, eliminating large laboratory setups and ensuring portability, as well as allowing our sensors to be used in an electronic-nose type setup.
In Situ optical monitoring and process control: In situ monitoing using spectroscopic ellipsometry - Vacuum deposition system for organic semiconductors with in situ monitoring using a spectroscopic ellipsometer; process control software for monitoring thickness and optical properties of the thin films during deposition; monitoing of multiple layer deposition - Using an organic solar cell, with a power conversion efficiency of ~6%, as a model system, methodology for monitoring thickness of multiple layers developed; Powering of low-power electronics - demonstrating the powering oflow-power electronics, a temperature sensor in this case, using a flexible organic solar cell.
Exploitation Route There are very significant ways in which many of the findings here are already being taken forward through IAA funding as well as Innovate UK and other industry funding. Significant impact routes can be accessed at www.waftcollaboration.org under newsletters. Our latest newsletter describes how new industrial partners have found our research relevant to their challenges.
Sectors Chemicals,Creative Economy,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Healthcare,Leisure Activities, including Sports, Recreation and Tourism,Manufacturing, including Industrial Biotechology,Culture, Heritage, Museums and Collections,Retail,Security and Diplomacy

URL http://www.waftcollaboration.org/
 
Description The Wearable and Flexible Technologies consortium (WAFT) provided a new and important impetus to the manufacturing technologies of the future in the space of wearable and flexible technologies at a time when such processes were still largely unknown. The grant was extremely successful - starting with just 7 industrial partners, the grant had 15 industrial partners before it ended. Several postdocs who worked on the project have gone on to substantial positions in industry and academia, including professorships worldwide. The grant resulted in spawning brand new ideas and technologies, some of which are listed further below. Small scale SME's that became members of the consortium have since been sold, or their assets acquired by larger companies that are now investing even more into the ecosystem in the UK. The grant has resulted in low-term partnerships that generated brand new knowledge and ideas for the new sustainability agenda - for example through the development of a brand new "smart window" which was widely profiled worldwide (e.g. in The Times, https://www.thetimes.co.uk/article/turn-on-the-windows-to-keep-warm-zd7052xld); this research was done in collaboration with three industrial participants including Eckersley O'Callaghan, the large architectural engineering firm. Projects thus spawned are still ongoing, and have secured new partnerships or funding. The group of researchers involved have in all cases have continued highly productive research careers at all career stages. The grant website will be mainatained for several more years and a lot of information is on the website (www.waftconsortium.org). The findings of this award has contributed to several non-academic outputs specifically towards developing tools and techniques to commercialize displays, especially by the involvement of Bodle Technologies Limited. Furthermore, a materials list was compiled via the Co-I at Southampton which has been circulated to industrial partners keen ti take up any materials deposition on their chips for further integration. This could lead to breakthroughs in disruptive optoelectronic devices. The presentations of the WAFT Co-Investigators and the scientific discussions in the WAFT Poster Session demonstrated good progress within WAFT in October 2017 and again in February 2019 and in August 2019. Interlock of device development and modelling advanced rapidly over the last 18 months of the program leading to some very interesting demonstrations of wearable ammonia sensors on flexible substrates as well well as on polymer fibers. Individual exchanges between research groups and industry as well as scientific interactions with IAB partners were highlighted at the last IAB meeting and it was remarked that this programme was "one of the best uses of £2.5 million, they hav ever seen" by one IAB member. The Industrial Partners were encouraged to follow up on scientific discussions and research collaborations under individual NDA's even after the impending end of the programme. New partnerships have been created and Innovate UK funding was procured. It is likely the the potential impact of this programme will continue into the next few years. April 2020: Prof. Moritz Riede & Sameer Kesava (PDRA) - IP developed Title: Analysing real-time spectroscopic ellipsometry data for characterising optoelectronic quality Our invention relates to a method of and a system for processing spectroscopic ellipsometry (SE) data, in particular for monitoring interfacial processes. Ellipsometry is used to characterise properties of thin films such as thickness, roughness, optical constants, composition, crystallinity, quality and concentration, and may obtain sub-nanometre surface sensitivity. When light, including polarisation components in both the s- and p- planes, interacts with a substrate, the relative ratio of the polarisation components may change. Ellipsometry determines the change in polarisation by measuring the amplitude ratio, and phase difference, of the reflected or transmitted light. The "ellipsometric ratio (ER)", (related to the changes in polarisation) may then be calculated to be tan(). This data is then typically fitted to a model that has been constructed to describe the sample in order to extract parameters of interest such as optical constants and layer thickness. Model analysis for complex materials, such as organic semiconductors, becomes increasingly computationally expensive and time consuming with an increasing numbers of layers. The application of SE to in situ, real-time analysis of thin films, as the layers are being deposited, for example, may be limited to determining the thickness of the sample only, owing to the increased complexity of the resultant spectra due to absorption of the incident radiation by multiple layers of the substrate. This results in manufacturers often relying on thickness monitoring (which provides no information on the optical parameters or layer quality) as the only form of quality control of thin film devices in situ, followed by intensive post- production quality testing. As a result, product defects are not identified until post-production, resulting in high material wastage and process inefficiency. The present invention aims to provide an improved method of processing SE data (e.g. in real-time) without such model dependence.
Sector Aerospace, Defence and Marine,Chemicals,Creative Economy,Digital/Communication/Information Technologies (including Software),Education,Electronics,Energy,Healthcare,Leisure Activities, including Sports, Recreation and Tourism,Manufacturing, including Industrial Biotechology,Culture, Heritage, Museums and Collections,Retail,Security and Diplomacy
Impact Types Cultural,Societal,Economic

 
Description G7 Statement with GYA input
Geographic Reach Multiple continents/international 
Policy Influence Type Implementation circular/rapid advice/letter to e.g. Ministry of Health
Impact Some of our recommendations on early stage researchers and women in research to the G7 Science Ministers' meeting made it into the Final Tsukuba Communiqué
URL http://www8.cao.go.jp/cstp/english/others/communique_en.html
 
Description More Open Access Pledge
Geographic Reach Multiple continents/international 
Policy Influence Type Implementation circular/rapid advice/letter to e.g. Ministry of Health
URL https://moreopenaccess.net/
 
Description Position Statement on Open Data by the Young Academies of Europe and the Global Young Academy
Geographic Reach Multiple continents/international 
Policy Influence Type Implementation circular/rapid advice/letter to e.g. Ministry of Health
URL https://globalyoungacademy.net/wp-content/uploads/2016/04/Position-Statement-on-Open-Data-by-the-You...
 
Description Position statement on Open Access by the Young Academies of Europe and the Global Young Academy
Geographic Reach Multiple continents/international 
Policy Influence Type Implementation circular/rapid advice/letter to e.g. Ministry of Health
URL https://globalyoungacademy.net/wp-content/uploads/2016/04/Position-statement-on-Open-Access-by-the-Y...
 
Description The role of Young Academies in achieving the UN SDGs, 10/17
Geographic Reach Multiple continents/international 
Policy Influence Type Implementation circular/rapid advice/letter to e.g. Ministry of Health
Impact taken up and promoted by several senior science academies
URL https://globalyoungacademy.net/wp-content/uploads/2017/10/Statement-RoleYoungAcademies-SDGs-Oct2017....
 
Description All-dielectric beam control using dynamically-tuneable metasurfaces
Amount £52,700 (GBP)
Organisation Defence Science & Technology Laboratory (DSTL) 
Sector Public
Country United Kingdom
Start 09/2019 
End 09/2023
 
Description Chalcogenide Photonic Technologies
Amount £594,605 (GBP)
Funding ID EP/M008487/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 05/2015 
End 04/2018
 
Description Chalcogenide-based memory and logic for flexible electronics applications Read more at http://www.exeter.ac.uk/studying/funding/award/?id=3447#qpQPkbQAvClARAq4.99
Amount £40,000 (GBP)
Organisation Pragmatic Printing Ltd 
Sector Private
Country United Kingdom
Start 09/2019 
End 09/2023
 
Description Designing Nanosystems: the CMOS Way; Standard Research - NR1
Amount £298,001 (GBP)
Funding ID EP/N010159/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2016 
End 11/2017
 
Description Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
Amount £261,632 (GBP)
Funding ID EP/N020278/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 04/2016 
End 03/2019
 
Description Dynamically-tuneable optical metasurfaces for laser implosion fusion applications Read more at http://www.exeter.ac.uk/studying/funding/award/?id=3450#HiB6zfH5jew10Mf0.99
Amount £52,700 (GBP)
Organisation Atomic Weapons Establishment 
Sector Private
Country United Kingdom
Start 09/2019 
End 09/2023
 
Description EPSRC Capital Award in Support of Early Career Researchers
Amount £21,684 (GBP)
Funding ID EP/S017658/1 
Organisation University of Oxford 
Sector Academic/University
Country United Kingdom
Start 02/2019 
End 03/2020
 
Description Feasibility of a novel low cost technique to deposit chalcogenides
Amount £111,001 (GBP)
Funding ID 132374 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 08/2016 
End 09/2017
 
Description Fun-COMP
Amount € 3,999,999 (EUR)
Funding ID 780848 
Organisation European Commission H2020 
Sector Public
Country Belgium
Start 03/2018 
End 02/2022
 
Description ICT31: Fun-Comp
Amount £3,996,951 (GBP)
Funding ID 780848 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 03/2018 
End 02/2022
 
Description Industrial Funding Toyota for potential development
Amount € 50,000 (EUR)
Organisation Toyota Motor Corporation 
Sector Private
Country Japan
Start 11/2016 
End 10/2017
 
Description Industrial funding
Amount £60,000 (GBP)
Organisation Camvac Ltd 
Sector Private
Country United Kingdom
Start 09/2017 
End 09/2018
 
Description Infrared light control using phase-change metadevices
Amount $444,000 (USD)
Funding ID N-00014-16-R-BA01 
Organisation ONRG Office of Naval Research Global 
Sector Public
Country United States
Start 08/2017 
End 08/2020
 
Description Invited Renewal - EPSRC Manufacturing Fellowship
Amount £1,116,378 (GBP)
Funding ID EP/R001677/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2019 
End 01/2022
 
Description Microsoft EMEA Studentship
Amount £108,000 (GBP)
Organisation Microsoft Research 
Sector Private
Country Global
Start 01/2021 
End 01/2024
 
Description Next Generation Chalcogenides (ChAMP); MaFuMa grant
Amount £2,508,176 (GBP)
Funding ID EP/M015130/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 02/2015 
End 01/2020
 
Description Next generation computer memories - using light to store data; IAA grant
Amount £93,886 (GBP)
Funding ID EP/R511742/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 08/2017 
End 03/2020
 
Description TEAM-A: The tailored electromagnetic and acoustic materials accelerator
Amount £2,433,195 (GBP)
Funding ID EP/R004781/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 10/2017 
End 09/2022
 
Description Wearable and flexible technologies enabled by advanced thin-film manufacture and metrology
Amount £2,476,881 (GBP)
Funding ID EP/M015173/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 05/2015 
End 04/2019
 
Title High current conductive AFM 
Description Our set-up on an Asylum MFP 3D atomic force microscope allows us to induce up to 1 mA of current through a conductive AFM tip. This allows us to probe the nanoscale electrical properties of functional materials at current densities commonly used in real world devices, helping accelerate real-world usability of such materials in devices that have dimensions of devices, eliminating the need for lithographic patterning in order to screen novel materials. We have successfully used this to characterize phase change materials, and more recently are adapting this for 2D materials. 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact A spin out company Bodle. Several papers and patents resulting from the development of this technique. 
 
Title Optoelectronic testing station - Fiber Coupling with nanometer precision 
Description Set-ups used for combined optoelectronic testing of nanoscale and microscope devices have several limitations with respect to mechanical, electrical and optical operation properties. Therefore, in order to continue with the study of mixed mode electro-optical operation of functional materials, a new experimental set-up with better characteristics was required. The following features were identified. In order to aim the laser accurately on the device, a raster reflectivity scan was necessary. This, in turn, called for the improvement in reproducibility of the stage position, as well as a reduction of the drift due to thermal expansion and mechanical relaxation of the components. Additionally, by reducing mechanical drift, the time available to perform the test would also increase, allowing for better focusing and aiming into the area of interest. Improvement in the scan step resolution was also required, in comparison to the 100nm step resolution provided by the pico-motors of the former setup. Also, nano-second range optical and electrical pulses were needed to induce amorphization of GST devices. All of the before mentioned requirements were subsequently incorporated into a new experimental setup in a way which is described in detail in a thesis submitted by Gerardo Rodriguez Henandez whilst working in Harish Bhaskaran's laboratory. The requirements for the optical component of the experimental setup corresponded closely to a laser-scanning microscope. Such an instrument produces images by raster scanning a focused laser beam on a given sample and acquiring the intensity of the reflected signal at every point during the scan. However, higher power than that required to simply acquire reflectance scans (3mW) was also needed to optically induce phase changes of phase change materials (~60mW). One important feature in the current design was the use of fibre-coupled optical components. Such components allow a reduction of the setup footprint, simplify the alignment and improve the sensitivity to vibration and are generally safer to use. 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact A paper and a research thesis was published. 2 new patents have been filed. 
 
Title Our Group's Github Page 
Description Following Open Science/Innovation approaches, we put all our code, procedures and design up on github 
Type Of Material Improvements to research infrastructure 
Year Produced 2019 
Provided To Others? Yes  
Impact Code, procedures and designs available online, this webpage is continuously updated and as such the outcome date is always moved to the most recent year. 
URL https://github.com/AFMD
 
Description Atomistic potential development for thermoelctrics 
Organisation University of Bath
Department Department of Chemistry
Country United Kingdom 
Sector Academic/University 
PI Contribution We have developed a first principle model system to estimate the SPin-Seebeck effect for BiTh2 systems. Currently we are working on including different doping materials to the system to enhance the SPin-Seebeck effect.
Collaborator Contribution The partners have brought in their expertise in potential development and system analysis.
Impact We have started to formulate a joined paper and conference contribution for the MMM 2016 in New Orleans USA
Start Year 2015
 
Description Development of an ultra sensitive molecular detector 
Organisation Defence Science & Technology Laboratory (DSTL)
Country United Kingdom 
Sector Public 
PI Contribution A PhD student in Oxford is carrying out research into a new kind of sensor for the detection of low concentrations of vapours of explosive materials.
Collaborator Contribution Our partners (Dstl) are sponsoring the project and will provide access to material that are not available in Oxford.
Impact We have published a paper on explosives vapour sensing. The collaboration has also led to two further grants, one EPSRC, and a further Dstl grant.
Start Year 2013
 
Description Fun-Comp 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation Interuniversity Micro-Electronics Centre
Country Belgium 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS)
Country France 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation Thales Group
Country France 
Sector Private 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Exeter
Country United Kingdom 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Münster
Country Germany 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Fun-Comp 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world. The Fun-COMP project aims to develop a new wave of industry-relevant technologies that will extend the limits facing mainstream processing and storage approaches. We will do this by delivering innovative nanoelectronic and nanophotonic devices and systems that fuse together the core information processing tasks of computing and memory, that incorporate in hardware the ability to learn adapt and evolve, that are designed from the bottom-up to take advantage of the huge benefits, in terms of increases in speed/bandwidth and reduction in power consumption, promised by the emergence of Silicon photonic systems. We will develop basic information processing building blocks that draw inspiration from biological approaches, providing computing primitives that can mimic the essential features of brain-like synapses and neurons to deliver a new foundation for fast, low-power, functionally-scaled computing based around non-von Neumann approaches. We will combine such computing primitives into reconfigurable integrated processing networks that can implement in hardware novel, intelligent, self-learning and adaptive computational approaches - including spiking neural networks, computing-in-memory and autonomous reservoir computing - and that are capable of addressing complex real-world computational problems in fast, energy-efficient ways. We will address the application of our novel technologies to future computing imperatives, including the analysis and exploitation of 'big data' and the ubiquity of computing arising from the 'Internet of Things'. To realise our goals we bring together a world-leading consortium of industrial and academic researchers whose current work in the development of future information processing and storage technologies defines the state-of-the-art.
Collaborator Contribution Research
Impact N/A
Start Year 2018
 
Description Heliatek GmbH 
Organisation Heliatek GmbH
Country Germany 
Sector Private 
PI Contribution Discussions about the photophysics of organic solar cells
Collaborator Contribution Discussions about the industrial relevance & direction of research
Impact in preparation
Start Year 2013
 
Description Invited Manufacturing Fellowship Extension 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution industrial collaboration
Collaborator Contribution industrial advice
Impact N/A
Start Year 2018
 
Description Roll-to-roll manufacture of flexible thermoelectric generators for powering wearable technologies 
Organisation Plasma Quest
Country United Kingdom 
Sector Private 
PI Contribution Sample manufacture and testing
Collaborator Contribution Access to deposition facilities and know-how of deposition technology. Intellectual input in understanding the manufacturing process.
Impact Demonstrator devices Anticipated two publications in preparation
Start Year 2021
 
Description Scale-up Manufacturing of OTFT Circuits for Medical Sensing 
Organisation Emerson & Renwick Limited
Country United Kingdom 
Sector Private 
PI Contribution Coatings and materials characterisation, expertise of OTFTs and R2R processing for flexible electronics
Collaborator Contribution Roll-to-roll coating expertise and facilities
Impact Demonstration of manufacturing routes for flexible OTFT circuits
Start Year 2020
 
Description Smart Materials for Data Storage 
Organisation Ilika
Department Ilika Technologies Ltd.
Country United Kingdom 
Sector Private 
PI Contribution HAMR is a technology designed to enable the next big increase in the amount of data that can be stored on a hard drive. It uses a new kind of media magnetic technology on each disk that allows data bits, or grains, to become smaller and more densely packed than ever, while remaining magnetically stable. A small laser diode attached to each recording head heats a tiny spot on the disk, which enables the recording head to flip the magnetic polarity of each very stable bit, enabling data to be written. Our research team provided expertise in our knowledge of advanced materials to the industrial partner Seagate to help them indentify materials more suitable in the hard drives they were developing.
Collaborator Contribution The Nanomaterials for Data Storage project has successfully demonstrated new materials with new capabilities to improve read write transducer reliability and performance in next generation hard drive products. High thermal conductivity materials have been processed at Seagate's wafer fabrication facility with follow on electrical testing to verify that the nitride based materials have enabled reduced thermal effects in the transducer, translating into a 25% gain in the ability to set the distance between the head and the disk. This will enable reduced time to product launch for the Heat Assisted Magnetic Recording (HAMR) hard drive technology due to reach the market in early 2019. Advanced material synthesis and test capability at the partner organisations, Ilika and University of Southampton was used to facilitate material optimisation and exploration with many alternative options. The Nanomaterials for Data Storage has resulted in strong working relationship between Seagate, llika and the University of Southampton. As a result of this another Innovate UK funded project, Photonic Material Process for Data Storage, is underway. The aim of this project is to put in place a mechanism for continued business interaction between Seagate and Ilika. Also, the University of Southampton has been able to quickly demonstrate material properties and measurements in several areas that are of interest to Seagate. It is hoped that one of these areas can become the focus on a future Innovate UK funded project. The partners are actively working on this at the moment.
Impact Ellipsometry of 2D materials Improved annealing processes for 2D materials Processes for lower temperature deposition of 2D materials Invited to Participate Knowledge Transfer Network, UK led workshop: Contact: Monika Dunkel monika.dunkel@ktn-uk.org Participated in Flexible and Printed Electronics, Displays & Photonics demonstrator workshop, 21 November 2017, Cambridge
Start Year 2016
 
Description UltraSRD - Innovate UK 
Organisation Bodle Technologies Ltd
Country United Kingdom 
Sector Private 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description UltraSRD - Innovate UK 
Organisation M-Solv
Country United Kingdom 
Sector Private 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description UltraSRD - Innovate UK 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description UltraSRD - Innovate UK 
Organisation University of Southampton
Country United Kingdom 
Sector Academic/University 
PI Contribution UltraSRD - Designing a proof of concept ultra-low power, solid-state reflective colour display using novel phase change materials. The technological challenge of successfully implementing colour & video capability within a reflective (non-backlit) display has been challenging the display industry for years. Reflective E-reader displays are slow to refresh and only available in black and white, whilst backlit LCD and emissive OLED screens consume high rates of power: this limits the information display applications that these technologies can be applied to. Development of a feasible low power, Cookies on the GtR website multi-colour display technology could see many new avenues of opportunity open for new reflective information displays including in wearable devices and the internet of things. UltraSRD addresses this unsatisfactory compromise on colour, speed and energy consumption: based on research completed at the University of Oxford and with industry support, Bodle Technologies intends to investigate the feasibility of developing a commercially viable, high resolution, bistable, rapid refresh, colour reflective display by 2020 using novel phase change materials.
Collaborator Contribution phase change material display research
Impact N/A
Start Year 2017
 
Description WAFT Industrial Partners 
Organisation BASF
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Bodle Technologies Ltd
Country United Kingdom 
Sector Private 
PI Contribution Discussions of samples (architecture/design, materials, properties) and experimental methods, in particular optical thin film monitoring
Collaborator Contribution Discussions of samples (architecture/design, materials, properties) and experimental methods, in particular optical thin film monitoring and industrial needs
Impact better thin film measurements during growth of organic semiconductors
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Bodle Technologies Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Centre for Process Innovation (CPI)
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation CreaPhys GmbH
Country Germany 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation CreaPhys GmbH
Country Germany 
Sector Academic/University 
PI Contribution Discussions of samples (architecture/design, materials, properties) and experimental methods, in particular optical thin film monitoring
Collaborator Contribution Discussions of samples (architecture/design, materials, properties) and experimental methods, in particular optical thin film monitoring and industrial needs
Impact better thin film measurements during growth of organic semiconductors
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Defence Science & Technology Laboratory (DSTL)
Country United Kingdom 
Sector Public 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Eckersley O'Callaghan
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Fraunhofer Society
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Heliatek GmbH
Country Germany 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation IBM
Department IBM Research Zurich
Country Switzerland 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Kurt J Lesker Company
Country United Kingdom 
Sector Private 
PI Contribution Discussions of samples (architecture/design, materials, properties) and experimental methods, in particular optical thin film monitoring
Collaborator Contribution Discussions of samples (architecture/design, materials, properties) and experimental methods, in particular optical thin film monitoring and industrial needs
Impact better thin film measurements during growth of organic semiconductors
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Kurt J Lesker Company
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Msolv Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Instruments
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Instruments Asylum Research
Country United States 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Photovoltaics
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Oxford Photovoltaics
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Plasma App Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Pragmatic Printing Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation SONY
Country Japan 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Sharp Laboratories of Europe Ltd
Country United Kingdom 
Sector Private 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation Swiss Center for Electronics and Microtechnology
Country Switzerland 
Sector Charity/Non Profit 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation University of Münster
Country Germany 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Description WAFT Industrial Partners 
Organisation University of Pennsylvania
Country United States 
Sector Academic/University 
PI Contribution The WAFT Research Team works in four research strands contributing to experimental research in metrology for process control and waste reduction, developing the flexible and functional components integration, focusing on modelling and reliability and scale-up via Roll-to-Roll process development.
Collaborator Contribution The WAFT IAB's purpose is to strengthen the WAFT research project by advising, assisting, supporting and advocating on the formulation of goals, objectives, priorities and plans for this exploratory programme and research. The WAFT IAB has no legislative, administrative or programmatic authority and is advisory only. Members are volunteers who share expert knowledge of the research or product development tasks and competency requirements for specific research outputs. The role of the Industry Advisory Board is to facilitate the exchange of ideas between the board members, the academic staff and the students in the WAFT Project. The WAFT IAB members bring a wide range of backgrounds and real-world experience to the table; these can be applied to situations faced by the team. The IAB members can also act as mentors to students in specific areas. In addition to their expertise and advice, IAB members can provide a wealth of other resources such as networking contacts, sponsorship, employment/volunteer experiences, access to facilities or equipment to name a few.
Impact Industrial Advisory Board Meeting with Science Meeting was held in October 2015 with 33 delegates. The WAFT Scientific Meeting was held in October 2016 with 55 delegates from the academic and industrial partners. The number of industrial partner companies increased from 8 to 17 over a year, and 15 industrial partner representatives attended the WAFT Industrial Advisory Board Meeting on 21 October 2016. The number of industrial partner increased to 20 in 2017. The WAFT Annual Meeting showcased 10 academic talks and 3 presentations from Industrial Partners: BASF, Oxford Instruments (Asylum Research), Fraunhofer FEPP and closed with a poster session.
Start Year 2015
 
Title DISPLAY 
Description A display is described which comprisesa plurality of pixels (12), wherein each pixel (12) comprises a plasmonic resonator (26) including first and second metallic material elements (16, 22) and incorporatinga layer (18) of a phase change material, the plasmonic resonator (26) being arranged such that in one material state of the phase change material (18) the electric field coupling between the second metallic material element (22) and the phase change material layer (18) is strong and so strong absorption of selected wavelengths of the incident light occurs, whereas in another state of the phase change material (18) the electric field coupling between the metallic material elements (16, 22) and the phase change material layer (18), and between the first and second metallic material elements (16, 22) is weak and so re-radiation of incident light occurs, the pixel (12) being of high reflectance. 
IP Reference WO2019038559 
Protection Patent application published
Year Protection Granted 2019
Licensed No
Impact None so far
 
Title H Bhaskaran 1509992.2 
Description Patent Application Status: File, Type: Priority. Application Date: 9 June 2015. 
IP Reference GB1509992.2 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1512914.1 
Description Patent Application Status: File, Type: Priority. Application Date: 22 July 2015. 
IP Reference GB1512914.1 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1516579.8 
Description Patent Application Status: File, Type: Priority. Application Date: 18 Sept 2015 
IP Reference GB1516579.8 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title H Bhaskaran 1518371.8 
Description Patent Application Status: File, Type: Priority. Application Date: 16 Oct 2015. 
IP Reference GB1518371.8 
Protection Patent application published
Year Protection Granted 2015
Licensed No
Impact No impact yet.
 
Title PHASE CHANGE SWITCHING 
Description A device (200) comprising: a PCM region (213), a first electrode (211), a second electrode (212), and an insulating region (215) disposed between the PCM region (213) and the first electrode (211) to prevent direct electrical contact between the first electrode (211) and PCM region (213), wherein a capacitor structure is formed by the first electrode (211), second electrode (212), PCM region (213) and insulating region (215). A controller is disclosed, configured to: control the phase of the PCM region (213) by applying an alternating voltage across the capacitor structure so as to at least partially change the phase of the PCM region (213) by causing an AC current to flow through the PCM region (213); and/or read the state of the PCM region (213) by applying an alternating voltage across the capacitor structure so as to detect the phase of the PCM region (213) from the impedance of the capacitor structure. 
IP Reference WO2018224807 
Protection Patent application published
Year Protection Granted 2018
Licensed No
Impact The development of this patent has provided a better understanding of large area switching of phase-change materials for applications requiring electrical control over bi-stable optical devices.
 
Title PRINT HEAD 
Description A print head for use in a flexographic process, the print head comprising a flat surface having a first portion with a first surface energy and a second portion with a second surface energy that is different from the first surface energy. 
IP Reference WO2021069868 
Protection Patent application published
Year Protection Granted 2021
Licensed No
Impact Further development of IP
 
Title Thermoelectric generator device 
Description Multiple layered thermoelectric generator for flexible devices 
IP Reference 2101922.9 
Protection Patent application published
Year Protection Granted 2021
Licensed No
Impact Follow-on project
 
Title Tuneable Optical Coatings 
Description A new concept for tuneable optical coatings based on lossless phase change materials that show strong coupling between their structural and optical properties. 
IP Reference United Kingdom Patent Application No. 1908145.4 
Protection Patent application published
Year Protection Granted 2019
Licensed No
Impact Nothing yet.
 
Title Group Code on Github 
Description Code, procedures and designs available online, this webpage is continuously updated and as such the outcome date is always moved to the most recent year. 
Type Of Technology Software 
Year Produced 2019 
Open Source License? Yes  
Impact research and open science community 
URL https://github.com/orgs/AFMD/dashboard
 
Company Name Bodle Technologies Limited 
Description Bodle develops and commercialises a new class of active smart glazing products and displays. 
Year Established 2015 
Impact Bodle's core technology is about the creation and manipulation of colour that is reflected off a surface by changing the refractive index of ultra-thin functional layers. The technology is completely revolutionary, as it can achieve all of the following: • Extremely high resolution, with pixel sizes of sub-100 nm already demonstrated (compared to several micrometers for the best current technology). • Capable of very deep colour hues matching and even exceeding the range of colours possible by the latest technologies in displays • Can be clearly viewed in bright lighting conditions • Eye fatigue minimal as displays similar to paper • Very low power similar to electrochromic displays • Extremely high speed switching capable of video rendition in reflective mode, and even holographic displays possible as switching speeds are much lower than microseconds.
Website http://www.bodletechnologies.com
 
Description 12th International Workshop on Materials Behaviour at the Micro and nano Scale, China 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description 2022 MRS Spring Meeting & Exhibit, May 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Presentation: On-Demand Modifications of Thin-Film Transistors for Label-Free Biosensing Applications.
Year(s) Of Engagement Activity 2022
 
Description 6th IEEE International Conference on Emerging Electronics 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited Speaker: Photonic Computing - Devices for future systems.
Year(s) Of Engagement Activity 2022
URL https://ieee-icee.org/
 
Description 6th IEEE International Conference on Emerging Electronics 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Design for Robust and Efficient Neuromorphic Photonic Accelerator (Oral)
Samarth Aggarwal, Bowei Dong, June Sang Lee and Mengyun Wang (University of Oxford,
United Kingdom (Great Britain)); Andrew Katumba (Gent University & IMEC, Belgium); Peter Bienstman
(Gent University - imec, Belgium); Harish Bhaskaran (Oxford University, United Kingdom (Great Britain))
Year(s) Of Engagement Activity 2022
URL https://ieee-icee.org/wp-content/uploads/2022/12/Final-Detailed-IEEE-ICEE-Program-and-Abstract-Bookl...
 
Description A talk or presentation - A talk or presentation - International Workshop of Physical Computing, Italy - Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Samarth Aggarwal, Yuhan He, Iman Esmaeil Zadeh, Harish Bhaskaran* Reconfigurable Silicon Carbide photonics using Phase change materials
Year(s) Of Engagement Activity 2022
 
Description A talk or presentation - International Workshop of Physical Computing, Italy - Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Utku Emre Ali, Gaurav Modi, Ritesh Agarwal and Harish Bhaskaran* Phase Change Nanowires as Tunable NEMS
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Article Chemistry World 06/16 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Mentioning of research
Year(s) Of Engagement Activity 2016
URL https://www.chemistryworld.com/feature/the-next-generation/1010134.article
 
Description Artist in Residence Meadhbh O'Connor's Insight Blog 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact On Mark Making: An artist's Impression from insitde Oxford's Bhaskaran Lab
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/features/mark-making-artist-s-impression-inside-oxford-s-bhaskaran-lab?fbc...
 
Description Cambridge Graphene CDT Adv. Tech Lecture 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact A high profile talk discussing the fundamentals of the research condcuted in the Advanced Nanoscale Engineering Group for the past decade - for those interested in the EPSRC Centre for Doctoral Trainng in Graphene Technology. Sparked questions and discussions afterwards.
Year(s) Of Engagement Activity 2022
URL https://www.graphene.cam.ac.uk/files/ea2022.pdf
 
Description Co-organisation of Session at World Chemistry Congress, Paris, 07/19 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Co-organiser of session " Toward multi-terawatt clean photovoltaic energy conversion - grand chemical challenges" at the IUPAC World Chemistry Congress
Year(s) Of Engagement Activity 2019
URL https://www.iupac2019.org/
 
Description Collaboration agreement with Digital University Kerala Oxford - Kerala Agreement 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Press release: On 11 October 2022 the University of Oxford entered into a Memorandum of Understanding (MoU) with the Kerala University of Digital Sciences, Innovation and Technology (DUK), to advance research and academic exchange in the fields of nanotechnology, AI, sustainability, digital health and innovation. Professor Harish Bhaskaran has been leading this initiative, and can be seen to the far left hand side of the photograph showing representatives* from the two institutions displaying the signed copies of the MoU.

You can read more about this exciting development on the MPLS website: 'Oxford to collaborate with Digital University Kerala on nanotechnology, AI, sustainability, digital health, and innovation'.
Year(s) Of Engagement Activity 2022
URL https://www.mpls.ox.ac.uk/latest/news/university-of-oxford-to-collaborate-with-digital-university-ke...
 
Description Conference for Undergraduate Women in Physics 03/17 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Undergraduate students
Results and Impact Labtour to the participants of the Conference for Undergraduate Women in Physics
Year(s) Of Engagement Activity 2017
URL https://twitter.com/AFMDGroup/status/845663190503604232
 
Description Conference on Lasers and Electro-Optics (CLEO), San Jose 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang† , J. S. Lee† , S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Reconfigurable metasurfaces based on low-loss phase change material Sb2Se3, Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, 7-12 May 2022. Oral presentation (online).
Spaked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Conference on Lasers and Electro-Optics (CLEO), San Jose 2022 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Gave a talk online in CLEO conference with over 50 participants from industry and academia.
Ultrafast Switching in Integrated Photonics using Antimony
Questions and discussions
Year(s) Of Engagement Activity 2022
URL https://ieeexplore.ieee.org/abstract/document/9891445
 
Description Discovery of new nanowire assembly process could enable more powerful computer chips 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Researchers from Oxford University's Department of Materials have developed a technique to precisely manipulate and place nanowires with sub-micron accuracy. This discovery could accelerate the development of even smaller and more powerful computer chips.
Year(s) Of Engagement Activity 2022
URL https://www.ox.ac.uk/news/2022-09-29-discovery-new-nanowire-assembly-process-could-enable-more-power...
 
Description ECOC 2020 - Virtual Workshop: Functional materials enable superior tensor cores to back propagation free photonic computing hardware 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Discussion from industry/academic experts to spark discussion around the topic of Pathway to Bring Photonics in High Performance Computing: from Materials to Applications
Year(s) Of Engagement Activity 2020
URL https://ecoco2020.org/index.php/programme/sunday-workshops
 
Description EPCOS 2022 Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Poster presentation at EPCOS conference , presented a paper title Reconfigurable Silicon Carbide Photonics using Phase Change Materials
Year(s) Of Engagement Activity 2022
 
Description EPCOS 2022 Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, June Sang Lee, Mengyun Wang, Harish Bhaskaran1* Ultra-Efficient Plasmonic Phase-Change Devices by Improved Mode Coupling, E\PCOS 2022, Oxford, UK, 13 - 19 September 2022. Poster presentation.
Sparked discussion and questioning
Year(s) Of Engagement Activity 2022
 
Description EPCOS 2022 Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Polarization-selective tunability in phase-change nanowires", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, EPCOS 2022, 18-21st September 2022, Oxford, UK (Oral presentation)
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description ESA Science Coffee - Invited Talk to the Advanced Concepts Team 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Space Exploration needs new nanoengineering concepts. Followed by Q&A and discussion
Year(s) Of Engagement Activity 2021
URL https://www.esa.int/gsp/ACT/coffee/2021-12-10-%20Harish%20Bhaskaran/
 
Description E\PCOS 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited speaker, hosting the 2020 E\PCOS Conference
Year(s) Of Engagement Activity 2019
URL http://epcos2019.cea.leti.fr/Documents/Final%20program%20EPCOS2019.pdf
 
Description E\PCOS 2022, Oxford 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang, J. S. Lee, S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Reconfigurable metasurfaces using lossless phase-change material, E\PCOS 2022, Oxford, UK, 13 - 19 September 2022. Oral presentation.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Engagement with Prime Minister of India Narendra Modi - Interaction with Indian-Origin Academics and Researchers - 2 October 2020 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Policymakers/politicians
Results and Impact Presentation of research and engagement routes to the Prime Minister of India during a presentation to him of research of Academics and Researchers from around the UK. Regarding the importance of India with the development of research. Video published on You Tube - Harish Bhaskaran's presentation is from 1 hr 22mins into the video.
Year(s) Of Engagement Activity 2020
URL https://www.youtube.com/watch?v=jFVBe0IkaLo
 
Description FunComp Review Meetings x 3: Oxford, Belgium & Zurich (latter web based) 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Discussion of current outcomes and progress, sharing of ideas for future development and direction
Year(s) Of Engagement Activity 2019,2020
 
Description Future Directions of Chalcogenides Research Workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Facilitated discussions
Year(s) Of Engagement Activity 2019
 
Description Guest Lecture at EPFL: In-Memory Computing - An Optical Perspective 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact In-Memory Computing - An Optical Perspective - Q&A Session afterwards.
Year(s) Of Engagement Activity 2021
 
Description Harish Bhaskaran: Reflecting on Displays - the future of colour - TEDxEton talk, video on youtube.com 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact How phase change materials and the development of nano-scale components will change the nature of colour displays.
Year(s) Of Engagement Activity 2017
URL https://www.youtube.com/watch?v=Y3oBBMxX-u8
 
Description Hosted Conversations in Photonics Workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Hosted the Conversations in Photonics Workshop, with invited speakers the purpose of the workshop was to spark questions and debate.
Year(s) Of Engagement Activity 2021
 
Description Hosted the online European Phase-Change & Ovonic Symposium 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Hosted the online conference. Over 200 attendees,13 invited speakers, 24 oral presentations, 37 posters.
Year(s) Of Engagement Activity 2021
URL https://epcos2021.materials.ox.ac.uk/
 
Description ICSE Poster Sameer 06/16 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Sameer's poster on "In situ monitoring of key thin film parameters of vacuum deposited organic photovoltaic devices" at the "7th International Conference on Spectroscopic Ellipsometry in Berlin"
Year(s) Of Engagement Activity 2016
 
Description IEEE CASS Intelligence in Chips: Integrated Sensors and Memristive Computing 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited Talk: In memory photonic computing - a new paradigm for accelerators.
Year(s) Of Engagement Activity 2022
URL https://www.intelligentchip.org/?fbclid=IwAR2chzzecLi3o1-BZryEr43uXqid1IO54w1UhCxEr3aoSoT-fi3zNOy57B...
 
Description IEEE Nano 2022 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Polarization-selective electro-optical tunability in phase-change nanowires", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, IEEE Nano, 4-8th July 2022, Palma de Mallorca, Spain (Oral presentation)
Sparked questions and further discussion.
Year(s) Of Engagement Activity 2022
URL https://2022.ieeenano.org/
 
Description IOP Photon 2022 - Nottingham 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Photonic non-von Neumann computing using functional materials for next generation AI hardware. Plenary Speaker.
Year(s) Of Engagement Activity 2022
URL https://www.photon.org.uk/plenary-speakers
 
Description In-memory signal processing and computing based on the integrated phase-change photonic platform Presented in SPIE Optics & photonics August 2020 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact It is a research dissemination for the photonic society, and discussed with experts and postgraduates students with the similar research fields. It is also a dissemination to the public and industry for better understanding of our work.
Year(s) Of Engagement Activity 2020
URL https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11469/114690H/In-memory-signal-pro...
 
Description Innolae Conference 20223 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited speaker: Novel nanomanufacturing processes for next-generation devices
Year(s) Of Engagement Activity 2023
URL https://innolae.org/invited-speakers
 
Description Integrated Photonics Research, Silicon and nanophotonics (IPR) Symposium: Machine Learning with Photonic Systems II - presentation 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presentation of latest research to experts from both academia and industry, followed by discussion.
Year(s) Of Engagement Activity 2021
 
Description International Workshop of Physical Computing, Italy - Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang, J. S. Lee, S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Reconfigurable metasurfaces using lossless phase-change materials
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description International Workshop on Physical Computing, Italy 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact In-memory photonic-electronic computing platform for convolutional processing - oral presentation. Sparked questions and discussions.
Year(s) Of Engagement Activity 2022
 
Description International Workshop on Physical Computing, Italy 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Reconfigurable nano-photonics using phase-change materials, Nikolaos Farmakidis, and Harish Bhaskaran
Oral presentation, sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description International Workshop on Physical Computing, Italy 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Attended as an invited speaker and took part in discusions and debates.
Year(s) Of Engagement Activity 2022
URL https://www.phoenixd.uni-hannover.de/en/about/news/physical-computing-2022
 
Description International Workshop on Physical Computing, Italy 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact International Workshop of Physical Computing, Erice, Italy, 29 October - 6 November 2022. Oral presentation.
Cheng, Zengguang, Tara Milne, Patrick Salter, Judy S. Kim, Samuel Humphrey, Martin Booth, and Harish Bhaskaran. 2021. "Antimony Thin Films Demonstrate Programmable Optical Nonlinearity." Science Advances 7 (1). American Association for the Advancement of Science. doi:10.1126/sciadv.abd7097.

Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description International Workshop on Physical Computing, Italy - Poster 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, June Sang Lee, Mengyun Wang, Harish Bhaskaran1* Ultra-Efficient Plasmonic Phase-Change Devices by Improved Mode Coupling, International Workshop of Physical Computing, Erice, Italy, 29 October - 6 November 2022. Poster presentation.
Year(s) Of Engagement Activity 2022
 
Description Invited Lecture at St Paul's Girls School 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Schools
Results and Impact Inted lecture as part of the Friday Lecture Programme, requested following a previous Lecture given to the Science Society.
Year(s) Of Engagement Activity 2021
 
Description Invited Presentation CPE Symposium, London, 06/17 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact Invited presentation at the Centre for Plastic Electronics Symposium 2017, London
Year(s) Of Engagement Activity 2017
 
Description Invited Seminar ICCAS, CN, 08/2018 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Postgraduate students
Results and Impact invited seminar
Year(s) Of Engagement Activity 2018
 
Description Invited Seminar Moritz Riede, AMOLF, NL, 03/2018 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact Invited Seminar at AMOLF in Amsterdam, The Netherlands, and meeting with academics there
Year(s) Of Engagement Activity 2018
 
Description Invited Seminar Moritz Riede, Abo Akademy University, FI, 06/2018 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Postgraduate students
Results and Impact Invited seminar
Year(s) Of Engagement Activity 2018
 
Description Invited Seminar Moritz Riede, OSCAR Opening, CN, 11/2018 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Undergraduate students
Results and Impact Invited Seminar as part of the OSCAR opening
Year(s) Of Engagement Activity 2018
 
Description Invited Seminar Moritz Riede, Tianjin University, CN, 03/2018 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Postgraduate students
Results and Impact Invited Seminar
Year(s) Of Engagement Activity 2018
 
Description Invited Talk Institute of Physics, Beijing, 03/19 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Postgraduate students
Results and Impact Invited talk at IOP
Year(s) Of Engagement Activity 2019
 
Description Invited Talk at International Conference on Optical MEMS and Nanophotonics - 2021 Summer School, IEEE Photonics Society 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited Talk: Non-von Neumann photonic computing for machine learning and artificial intelligence, as part of the Reconfigurable Photonic Computing.
Year(s) Of Engagement Activity 2021
 
Description Invited Talk: 2021 Intelligence in Chip: Tomorrow of Integrated Circuits (ICTIC) - IEEE CASS Seasonal School 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presentation of talk: Photonic Neural Networks, followed by questions and discussion.
Year(s) Of Engagement Activity 2021
URL https://ic-tic.org/
 
Description Invited presentation at the 61 st London International Youth Science Forum (LIYSF), London, 07/19 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Undergraduate students
Results and Impact Invited talk at the LIYSF
Year(s) Of Engagement Activity 2019
URL https://www.liysf.org.uk/
 
Description Invited presentation, F-Pi14, Berlin, 06/19 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact invited presentation F-Pi14
Year(s) Of Engagement Activity 2019
 
Description Invited presentation, SPIE optics + photonics, San Diego, 08/19 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited presentation SPIE
Year(s) Of Engagement Activity 2019
URL https://spie.org/conferences-and-exhibitions/past-conferences-and-exhibitions/optics-and-photonics-2...
 
Description Invited seminar ICCAS, Beijing, 04/19 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact Invited seminar ICCAS
Year(s) Of Engagement Activity 2019
 
Description Invited seminar Nano Center, Suzhou, 04/19 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Professional Practitioners
Results and Impact Invited seminar at Nano Centre in Suzhou
Year(s) Of Engagement Activity 2019
 
Description Invited seminar Peking University, Beijing, 04/2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact invited presentation at Peking University
Year(s) Of Engagement Activity 2019
 
Description Invited seminar at XJTLU, Suzhou, 03/19 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Postgraduate students
Results and Impact invited talk at XJTLU
Year(s) Of Engagement Activity 2019
 
Description Invited seminar, University of Bern, 06/19 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact Invited seminar, Uni Bern
Year(s) Of Engagement Activity 2019
 
Description JSPS Presentation Josue 11/16 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Josue's presentation "In-situ X-ray and Optical Characterisation of Vacuum-Deposited Organic Semiconductors" at the JSPS event at the Japanese Embassy London
Year(s) Of Engagement Activity 2016
 
Description Lighting up artificial neural networks 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact A team of international scientists have performed difficult machine learning computations using a nano-scale device, named an "optomemristor". The chalcogenide thin-film device uses both light and electrical signals to interact and emulate multi-factor biological computations of the mammalian brain while consuming very little energy.
Year(s) Of Engagement Activity 2022
URL https://www.eurekalert.org/news-releases/950994
 
Description MEMRISYS 2022 Conference 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited Talk - Optical Memristors and their Applications in photonic computing
Year(s) Of Engagement Activity 2022
URL https://www.memrisys2022.com/
 
Description META 2022 Torremolinos - Spain 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited talk Reconfigurable nano-photonics enabled by electrically and optically active phase-change materials. Nikolaos Farmakidis, Harish Bhaskaran Oxford University (United Kingdom) Photonic circuits have the potential to transform the way we process information through data multiplexing and parallelisation of computational tasks. Yet, the ability to electrically program, reconfigure and store information in conventional dielectric photonics remains challenging. Here we explore hybrid structures combining electrically and optically active phase-change materials, with nanoplasmonic components which are designed to enhance light-matter interactions and confine optical fields to dimensions compatible with CMOS nanoelectronics.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description META 2022 Torremolinos - Spain 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Reconfigurable nano-photonics enabled by electrically and optically active phase-change materials, presentation of latest findings to postgrads, industry and academic peers.
Year(s) Of Engagement Activity 2022
URL https://metaconferences.org/META/index.php/META2022/index
 
Description META Materials Inc Lunch & Learn March 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Invited talk: Switchable Surfaces, sparked questions and discussions relevant to the field of work for the business.
Year(s) Of Engagement Activity 2023
 
Description MIT Colloquium Dec 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited Colloquium sparked discussions and questions.
Year(s) Of Engagement Activity 2019
 
Description MME 2019 Conference, Oxford 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Hosted the well established European annual workshop on microtechnology.
Year(s) Of Engagement Activity 2019
 
Description MRS Fall Meeting 2022 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Polarization-selective tunability in hybrid phase-change nanowires", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, 2022 MRS Fall meeting, 27th November - 2nd December 2022, Boston, Massachusetts (Oral presentation)
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description MRS Fall Meeting Dec 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Keynote speaker: Optoelectronic Applications of Phase Change Materials, faciliated discussion
Year(s) Of Engagement Activity 2019
URL https://www.mrs.org/fall2019/activities-events/other/electronics-and-photonics-workshop
 
Description Machine Learning Photonics, Italy 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited lecturer: Interfacing optics and electronics on a chip.
Year(s) Of Engagement Activity 2022
URL https://mlph2022.lakecomoschool.org/confirmed-lecturers/
 
Description Media Interview BBC World Service Radio: Digital Planet 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Following publication of paper: Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality
Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett1, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran
published in Science Advances, 29 November 2019
Year(s) Of Engagement Activity 2019
 
Description Nature Publication: Research Highlight in response to press release 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Responded to request for information for a Research Highlight Article regarding paper Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality published in Science Advances, 29 November 2019.
Nikolaos Farmakidis, Nathan Youngblood, Xuan Li, James Tan, Jacob L. Swett, Zengguang Cheng, C. David Wright, Wolfram H. P. Pernice, Harish Bhaskaran
Year(s) Of Engagement Activity 2019
 
Description OPIC 2021 ICNN Keynote Speaker: In-memory Photonic Computing Approaches to Photoinc Tensor Cores 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Invited Talk given at ICNN 2021, part of the Optics & phtoonics International Congress 2021. Virtual presentation which presented knowledge and invited discussion.
Year(s) Of Engagement Activity 2021
 
Description On-chip photonics synapse - Overview of attention for article published in Science Advances - 18 news stories from 18 outlets 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Photonic microchips will process information like the human brain (Digital Journal, 08 Oct 2017); On-Chip Photonic Synapse Mimics Neural Synapse (Photonics.com, 04 Oct 2017); Researchers Have Developed Microchips That Behave Like Brain Cells (True Viral News, 02 Oct 2017; Phase-change material makes first on-chip photonics synapse (Nanotechweb, 29 Sep 201); Brain-like photonic microchips developed (The Hindu Business Line, 29 Sep 2017); ?????? ??????? ?????????? ????? ????? ????????? ? ??????? ????????? ????????? (Vesti.ru, 29 Sep 201); Brain-like photonic microchips developed (The Financial Express (IND), 29 Sep 2017); Brain-like photonic microchips developed (Business Standard, 29 Sep 2017); "Brain-like" photonic microchips may lead to new generation of computing: research (China.org, 28 Sep 2017); Scientists Make a Crucial Step Towards Unlocking the "Holy Grail" of Computing (Azooptics.com, 28 Sep 2017); Microchip Concept That Mimics Brain Cells Could Change The Future Of Computers (International Business Times, 28 Sep 2017); Photonics takes a step towards creating brain-like photonics microchips (MWEE, 28 Sep 2017); Researchers Have Developed Microchips That Behave Like Brain Cells (Science Alert, 28 Sep 2017); Move Towards 'Holy Grail' of Computing by Creation of Brain-like Photonic Microchips (Science Newsline, 27 Sep 2017); Scientists move step towards "holy grail" of computing by creating brain-like photonic microchips
(University of Exeter, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (Long Room, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (EurekAlert!, 27 Sep 2017); Move towards 'holy grail' of computing by creation of brain-like photonics microchips (Phys.org, 27 Sep 2017)
Year(s) Of Engagement Activity 2017
URL http://advances.sciencemag.org/content/3/9/e1700160
 
Description Optical MEMS and Nanophotonics (OMN) Summer School, Invited Talk: Non-von Neumann photonic computing for machine learning and artificial Intelligence 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Invited speaker for the Reconfigurable Photonic Computing portion of the Optical MEMS and Nanophotonics (OMN) Summer School. Presentation of research, followed by Q&A and discussion.
Year(s) Of Engagement Activity 2021
URL https://omn2021.org/speakers/
 
Description Oral Paper presented at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Mimicking biphasic synapses on a photonic platform
Year(s) Of Engagement Activity 2021
 
Description Oral Paper presented at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Electrically Programmable Integrated Plasmonic Phase-Change Memories with Optoelectronic Readout
Year(s) Of Engagement Activity 2021
 
Description Oral Paper presented at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Demonstration of over 108 cycling endurance in the nonvolatile photonic memory cells
Year(s) Of Engagement Activity 2021
 
Description Oxford Photonics Day 2022 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Hybridized-Active-Dielectric (HAD) nanowires for polarization-selective memory", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, Oxford Photonics Day 2022, 28th September 2022, Oxford, UK (Oral presentation)
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Oxford Photonics Day 2022 Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang, J. S. Lee, S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Reconfigurable metasurfaces using lossless phase-change materials, Oxford Photonics Day, Oxford, UK, 28 September 2022. Poster presentation.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Oxford Photonics Day 2022 Poster Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, June Sang Lee, Mengyun Wang, Harish Bhaskaran1* Ultra-Efficient Plasmonic Phase-Change Devices by Improved Mode Coupling, Oxford Photonics Day, Oxford, UK, 28 September 2022. Poster presentation.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2022
 
Description Oxford Physics Industry Day Sameer 09/16 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Industry/Business
Results and Impact Presenting Poster at the Oxford Physics Industry Day
Year(s) Of Engagement Activity 2016
URL https://twitter.com/AFMDGroup/status/779428417334808576
 
Description Oxford Prospects Programme Summer School Lecture 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Undergraduate students
Results and Impact Lecture and discussion
Year(s) Of Engagement Activity 2021
 
Description PhD Workshop at Microsoft Research Cambridge 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Presentation and discussions
Year(s) Of Engagement Activity 2019
 
Description Phemotronics School Presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Perspective of PCM applications: A company vision - virtual presentation at the PHEMTRONICS organised the 1st European School on Plasmonic and Phase Change Materials. Resulted in teaching, questions and discussions for students interested in the area of study.
Year(s) Of Engagement Activity 2022
 
Description Photonics Conference 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Conversations in Oxford - Future of Integrated Photonics in Computing, attracted global keynote speakers, and stemmed the beginning of additional events to continue to the conversation.
Year(s) Of Engagement Activity 2019
URL http://mme2019.manucodiata.org/index.php/future-of-photonic-computing
 
Description Poster Presentation at EPCOS 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Dynamic modulation of low-loss phase change materials on photonic waveguides
Year(s) Of Engagement Activity 2021
 
Description Presentation Moritz Riede, F-Pi 13, Hongkong, 06/17 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Contributed presentation at the 13th International Symposium on Pi-conjugated systems
Year(s) Of Engagement Activity 2017
 
Description Presentation/Seminar: Thales Group, Paris, 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Title: Photonics using functional materials for computing

Seminar Abstract:  Machine Learning and Artificial Intelligence would be possible without the fantastic advances in electronics, but surprisingly, new techniques and architectures for hardware engineering of such devices has only recently become an important topic. In this talk, I shall talk about how both device concepts and new materials can bring about a step change in this field. Photonics and Optoelectronics will become mainstream in the next few years, and I hope to convince you that whatever route these technologies take, a class of materials known as phase change materials will play a key role in their commercialization. I shall give an overview of these with a view towards their near-term applications in displays, and their medium-to-long-term potential in integrated photonic memories to photonic machine-learning hardware components, with a few of our recent results in this area.

To encourage discussion.
Year(s) Of Engagement Activity 2021
 
Description Press Release announcing Phoenics Project 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Breaking Moore's Law: New Photonic computing project aims to speed up artificial intelligence computing power to petascale processing levels
Year(s) Of Engagement Activity 2021
URL https://www.mpls.ox.ac.uk/latest/news/breaking-moore2019s-law-new-photonic-computing-project-aims-to...
 
Description Press Release: Nanoscale films of a pure metal exist in two stable optically distinguishable states 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Press release distributed to international press list regarding paper publication.
Year(s) Of Engagement Activity 2021
 
Description Press Release: Science Advances Article Announcement 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Press interest resulting in radio and magazine interviews.
Year(s) Of Engagement Activity 2019
 
Description Press release announcing paper publish in ACS Photonics 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact New adaptable smart window coating could help heat or cool a home and save energy
Press release picked up in many news outlets including International, consumer, trade, science news sites and print.
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/2022-02-07-new-adaptable-smart-window-coating-could-help-heat-or-cool-home...
 
Description Press release announcing paper published in Journal of Microsystems and nanoengineering 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact The Art of Calligraphy Inspires new nanomanufacturing technique
Year(s) Of Engagement Activity 2021
URL https://www.mpls.ox.ac.uk/latest/news/the-art-of-calligraphy-inspires-new-nanomanufacturing-techniqu...
 
Description QuEEN Advisory Board Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description RANK Conference 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Lead Speaker: Photonic Neuromorphic computing using functional materials
Year(s) Of Engagement Activity 2023
 
Description Rank Symposium Neuromorphic Photonics Feb 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Hybrid nanophotonic systems for in-memory computing at the interface of optics and electronics, Nikolaos Farmakidis, and Harish Bhaskaran
Sparked discussion and questions
Year(s) Of Engagement Activity 2023
 
Description Rank Symposium Neuromorphic Photonics Feb 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact "Exploiting degrees of freedom in active nanophotonic devices", June Sang Lee, Nikolaos Farmakidis, C David Wright, and Harish Bhaskaran, Rank Symposium Neuromorphic Photonics, 6-9th February 2023, Grasmere, Cumbria, UK (Oral presentation)
Sparked discussions and questions
Year(s) Of Engagement Activity 2023
 
Description Regional School Physicist of the Year Event Sameer 10/16 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Schools
Results and Impact Engagement with students during the Regional School Physicist of the Year Event hosted by the Physics Department in Oxford, judging of the posters presented by the students.
Year(s) Of Engagement Activity 2016
URL https://twitter.com/AFMDGroup/status/792047256631246848
 
Description Researchers develop the world's first ultra-fast photonic computing processor using polarisation 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact New research uses multiple polarisation channels to carry out parallel processing - enhancing computing density by several orders over conventional electronic chips.

In a paper published today in Science Advances, researchers at the University of Oxford have developed a method using the polarisation of light to maximise information storage density and computing performance using nanowires.
Year(s) Of Engagement Activity 2022
URL https://www.ox.ac.uk/news/2022-06-16-researchers-develop-worlds-first-ultra-fast-photonic-computing-...
 
Description Researchers develop world's first power-free frequency tuner using nanomaterials 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact In a paper published today in Nature Communications, researchers at the University of Oxford and the University of Pennsylvania have found a power-free and ultra-fast way of frequency tuning using functional nanowires.
Year(s) Of Engagement Activity 2022
URL https://www.ox.ac.uk/news/2022-03-18-researchers-develop-worlds-first-power-free-frequency-tuner-usi...
 
Description SPIE Active Photonic Platforms Optics & Photonics 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Invited Talk: Integrated photonic components for computing and beyond.
Year(s) Of Engagement Activity 2022
 
Description SPIE Conference Presentation, Baltimore April 2019 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited presentation.
Year(s) Of Engagement Activity 2019
URL https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10982/109820P/Phase-change-photoni...
 
Description SPIE Photonics West, San Francisco Jan/Feb 2023 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact M. Wang, J. S. Lee, S. Aggarwal, N. Farmakidis, Y. He, T. Cheng and H. Bhaskaran* Tunable metasurfaces using ultralow-loss phase-change materials, SPIE Photonics West, San Francisco, USA, 28 January - 2 February 2023. Oral presentation.
Sparked discussion and questions.
Year(s) Of Engagement Activity 2023
URL https://spie.org/conferences-and-exhibitions/photonics-west/photonics-west-exhibition?SSO=1
 
Description Seeing the light: researchers develop new AI system using light to learn associatively 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Third sector organisations
Results and Impact Researchers at Oxford University's Department of Materials, working in collaboration with colleagues from Exeter and Munster have developed an on-chip optical processor capable of detecting similarities in datasets up to 1,000 times faster than conventional machine learning algorithms running on electronic processors.
Year(s) Of Engagement Activity 2022
URL https://www.ox.ac.uk/news/2022-07-27-seeing-light-researchers-develop-new-ai-system-using-light-lear...
 
Description St Paul's Girls School - Physics Society Talk 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Schools
Results and Impact Invited to give a presentation to the St Paul's Girl's School Physics Society. A Q&A panel session followed with great interest.

"Thank you so much for taking the time to give us such an engaging talk on Wednesday! It was fascinating to hear about natural resonance frequencies, nanobridges, NEMs and more - using the guitar really helped us understand and visualise these concepts which take place on a nanoscale. Others told me how much they enjoyed learning about how crucial nanotechnology is in devices we use all the time, and your emphasis on the need for creativity in STEM was truly inspiring.
I imagine how busy you must be and am very grateful that you were able to give us an insight into nanoengineering, a topic I'm sure will only increase in relevance!
With many thanks from all of us at St Paul's,"
Year(s) Of Engagement Activity 2021
 
Description The Future of Materials for Low Loss Electronics - HRS Roadmapping Workshops April 2020 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact Discussion and development of a roadmap that will be coming out in due course. ROYCE.
Year(s) Of Engagement Activity 2020
 
Description UBC ECE Presentation 11/16 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Postgraduate students
Results and Impact invited seminar "Organic Solar Cells: a disruptive Technology?" in the department "Electrical and Computer Engineering" at UBC
Year(s) Of Engagement Activity 2016
 
Description Ultra SRD (Innovate UK) Progress Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Faciliated discussion
Year(s) Of Engagement Activity 2019
 
Description Uni Glasgow 03/16 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Postgraduate students
Results and Impact invited seminar "Vacuum-processed Organic Solar Cells" at Uni Glasgow
Year(s) Of Engagement Activity 2016
 
Description Visit MP Blackwood Ivan 12/16 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact Presenting a Poster during Symposium on 2nd December for Ms Nicola Blackwood MP
Year(s) Of Engagement Activity 2016
URL https://twitter.com/nicolablackwood/status/804781026765578241
 
Description WAFT Annual Meetings 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact We organized WAFT Annual meetings of industrial partners. More details at http://www.waftcollaboration.org
Year(s) Of Engagement Activity 2015,2016,2017
URL http://www.waftcollaboration.org
 
Description WAFT Meeting 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Hosted the WAFT Annual Meeting which featured presentations and discussions to share, learn and foster new strategic partnerships.
Year(s) Of Engagement Activity 2019
URL http://mme2019.manucodiata.org/index.php/wearable-flexible-tech
 
Description Workshop Participation, GOSH, CN, 010/2018 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Gathering of Global Open Science Hardware (GOSH)
Year(s) Of Engagement Activity 2018
 
Description Yu Shu's Science Blog 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact New Water-based Approach to manufacturing Semiconductors
Year(s) Of Engagement Activity 2021
URL https://www.ox.ac.uk/news/features?search=Yu+Shu&field_news_classification_tid=All