Advanced Nuclear Materials

Lead Research Organisation: University of Oxford
Department Name: Materials

Abstract

This proposal aims to maintain and expand the research impact of an internationally-leading team working on advanced structural materials for applications in nuclear fission and fusion reactors. The funding will enable us to support early-career postdoctoral researchers (ECRs) in a flexible manner tailored to their individual career trajectories, by providing job security, mentorship, opportunities for new skills acquisition and CPD training, and will facilitate their developing their own research ideas. Their training and scientific outputs will contribute to the resurgence of UK fission reactor programmes and the UK's internationally leading role in fusion science and technology. It will be a key factor in maintaining the integrity of the multi-skilled Oxford nuclear materials research team, and in developing the careers of its ECRs, and in reinforcing its position as an attractive environment for research, attracting and supporting new talent. The Platform Grant will also provide resources for the team to explore ambitious and novel research avenues, underpinning applications (from UK and international sources) for larger-scale funding to enhance the international position of the UK in nuclear research.

Planned Impact

1) Career development of individual researchers. Platform Grant funding will be used to support and promote the development of technical and research leadership skills of our most promising future research leaders in nuclear materials, with immediate impact on their careers, and in the longer term, on the vitality of this research sector within the UK.

2) Maintenance of critical mass and essential skills of an internationally -recognised research grouping, by buffering funding gaps for our best PDRAs. Thsi will have an immediate effect on our maintaining a coherent skilled team of postdoctoral researchers, helping us to maintain the momentum of our scientific research in nuclear materials, and helping us build our capability further by generating a more attractive research environment for potential new recruits.

3) Underpinning support for a unique UK research capability in a strategically important technological area. This is of national and international importance. For the UK's continuation of its leading role in the development of fusion power, we need to develop our capability so as to have a strong involvement in the design and construction of DEMO reactors, in which a key area is the development and assessment of fusion-capable materials. In fission, it is essential that the UK has expertise in the key technologies, rather than being simply a passive customer of overseas expertise. In new designs, such as Gen IV and/or Small Modular Reactors, the UK has the opportunity to be a more active technology and IP generator. All this will need a substantial and continuing stream of technical and scientific experts. This Platform Grant will have considerable impact in these more strategic aspects, by providing stabilising underpinning support for a centre of excellence in techniques central to design, characterisation and evaluation of improved and new nuclear materials.

Publications

10 25 50

publication icon
Auger M (2020) Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy in Journal of Nuclear Materials

publication icon
Carruthers A (2021) Novel reduced-activation TiVCrFe based high entropy alloys in Journal of Alloys and Compounds

publication icon
Fletcher C (2022) Automated calibration of model-driven reconstructions in atom probe tomography in Journal of Physics D: Applied Physics

publication icon
Fletcher C (2020) Towards model-driven reconstruction in atom probe tomography in Journal of Physics D: Applied Physics

publication icon
Gramlich A (2019) Atom Probe Tomography of Carbides in Fe-Cr-(W)-C Steels in steel research international

publication icon
Kabel J (2018) Journal of Materials Research in Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction

publication icon
Klimenkov M (2016) Effect of neutron irradiation on the microstructure of tungsten in Nuclear Materials and Energy

publication icon
Pickering EJ (2021) High-Entropy Alloys for Advanced Nuclear Applications. in Entropy (Basel, Switzerland)

publication icon
Rayaprolu R (2020) Indentation testing on 3 MeV proton irradiated tungsten in Nuclear Materials and Energy

publication icon
Song K (2022) Deformation behaviour of ion-irradiated FeCr: A nanoindentation study in Journal of Materials Research

 
Description New methods for the analysis of nuclear materials have been developed and applied to a wide range of nuclear materials.
Exploitation Route Use the new methods
Sectors Aerospace, Defence and Marine,Energy,Manufacturing, including Industrial Biotechology