Rational design of manufacturing processes for next generation optoelectronically active nanocomposite films and coatings

Lead Research Organisation: University of Cambridge
Department Name: Physics

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Publications

10 25 50
 
Description Development of a new manufacturing route to process optoectronically active organic-inorganic nano-composites for future solar cells and display applications.
Exploitation Route Formation of a new spin-out company, Cambridge Photon Technology : https://www.cambridgephoton.com/
Sectors Energy,Manufacturing, including Industrial Biotechology

 
Description Formation of a new spin-out company, Cambridge Photon Technology : https://www.cambridgephoton.com/ The company has raised >£1M in funding
First Year Of Impact 2019
Sector Energy,Manufacturing, including Industrial Biotechology
Impact Types Societal,Economic

 
Description FIG - FLUX INCREASING GLASS TO ENHANCE PHOTOVOLTAIC EFFICIENCY
Amount £600,000 (GBP)
Funding ID 103757 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 11/2017 
End 10/2019
 
Description PINSTRIPE - PHOTON INCREASE BY SPLITTING TO REALISE IMPROVED PHOTOVOLTAIC EFFICIENCY
Amount £232,000 (GBP)
Funding ID 132952 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 11/2017 
End 10/2018
 
Description Photon Management for Solar Energy Harvesting with Hybrid Excitonics - SolarX
Amount € 1,500,000 (EUR)
Funding ID 758826 
Organisation European Research Council (ERC) 
Sector Public
Country Belgium
Start 04/2018 
End 03/2023
 
Title Research data supporting "Engineering Molecular Ligand Shells on Quantum Dots for Quantitative Harvesting of Triplet Excitons Generated by Singlet Fission" 
Description This dataset consists of graphical and tabular data in an Origin file format. The file includes UV-Vis absorption, PLQE, kinetic modelling, transient PL and absorption, steady-state PL and excitation spectra and magnetic field dependent PL measurement data and analysis. Further information about the data collection methods and analysis is available via the journal JACS, at 10.1021/jacs.9b06584. The Origin file "Analysis.opju" contains the data for all plots presented in the paper and SI titled "Engineering Molecular Ligand Shells on Quantum Dots for Quantitative Harvesting of Triplet Excitons Generated by Singlet Fission", along with additional data surrounding the analysis of the presented data. The file is separated into folders sorted by experiment. Figures used in the paper are prefixed with either "Main Fig" or "SI" followed by a brief description of the figure. 
Type Of Material Database/Collection of data 
Year Produced 2019 
Provided To Others? Yes  
 
Description Eight19 
Organisation Eight19
Country United Kingdom 
Sector Private 
PI Contribution Expertise in singlet fission and photon-multiplier technology, photophysics, devices physics, synthesis of inorganic semiconductor nanocrystals
Collaborator Contribution Expertise in thin film processing and coating technology, commercialisation, manufacturing and product development.
Impact 3 Innovate UK projects, 1 completed successfully (SiFi - SInglet FIssion photon multiplier film to increase photovoltaic efficiency) and 2 ongoing (FIG - Flux Increasing Glass to enhance photovoltaic efficiency) & (PINSTRIPE: Photon Increase by Splitting to Realise Improved Photovoltaic Efficiency"). My team's work and collaboration with Eight19 has helped them raise significant investment to pursue the commercialisation of the Singlet Fission Photon Multiplier technology developed in my lab as part of this grant. Eight19 have a team of 3 scientists embedded in my group. 5+ patent applications filed.
Start Year 2015
 
Description NSG Pilkington 
Organisation Pilkington Glass
Country United Kingdom 
Sector Private 
PI Contribution We have an ongoing Innovate UK grant with two industrial partners Eight19 and NSG Pilkington , PINSTRIPE - PHOTON INCREASE BY SPLITTING TO REALISE IMPROVED PHOTOVOLTAIC EFFICIENCY. This is a 2 year grant helping to commercialise out singlet fission technology to improve conventional Si solar cells. We bring detailed photophysics, optoelectronics and device fabrication knowledge to the project.
Collaborator Contribution NSG Pilkington bring knowledge of manufacture of solar grade glass, encapsulants, glass processing, deposition of films on glass, environmental leaching tests
Impact Ongoing 2 year (11/2017-10/2019) Innovate UK project, PINSTRIPE - PHOTON INCREASE BY SPLITTING TO REALISE IMPROVED PHOTOVOLTAIC EFFICIENCY
Start Year 2017
 
Description Total - Sunpower 
Organisation Total E & P
Country United Kingdom 
Sector Private 
PI Contribution Singlet fission photon multipler research
Collaborator Contribution Sunpower part of the Total group is the 2nd largest Si PV manufacturer in the world. They are providing us Si modules and solar glass samples to test our photon multipler film on
Impact Currently confidential
Start Year 2016
 
Company Name CAMBRIDGE PHOTON TECHNOLOGY LIMITED 
Description Cambridge Photon Technology provides the simplest, lowest cost way to a significant increase in power from solar photovoltaic modules. Incorporated within a module, our Photon Multiplier Film uses advanced nanotechnology to split each incoming blue and green photon into two infra-red photons. This allows the silicon cell to capture energy that would otherwise be lost, and substantially increases its power output. 
Year Established 2019 
Impact RSC Emerging Technologies Prize Deep Tech Pioneers Award- Hello Tomorrow Global Challenge Cambridge Photon Technology have been named one of six national finalists in the 2019 Shell Springboard competition.
Website https://www.cambridgephoton.com/