Wide-Area Instrumentation of Power Networks using Existing Infrastructure

Lead Research Organisation: University of Strathclyde
Department Name: Electronic and Electrical Engineering

Abstract

The project's core activities will be the development, production, qualification and live testing of pre-commercial sensing systems that aim to satisfy currently unmet needs of electricity networks. Development will be led by Synaptec and Strathclyde, with calibration & qualification carried out by NPL against industry standards. Alstom Grid will define best industry practice and identify key use-cases for the technology based on market drivers. The project will be carried out over 36 months and will be split into 7 work packages (WPs):
WP1. M1-M36 (Synaptec). Project management and engagement with stakeholders.
This work package will ensure progress, commercial focus, and regular contact between partners via bi-weekly calls and quarterly site visits. Software (e.g. MS Project) will be used to aid good project management.
WP2. M1-M18 (Strath, Syn, ITL). Development and assembly of voltage and current transducers.
A range of transducers involving Synaptec's core IP will be developed in this work package to target the most relevant applications and measurement requirements covering low to high voltage and ac and dc systems: i) current sensors -involving Synaptec's hybrid optical voltage monitor operating with such primary current converters as CTs, mA-CTs, Rogowski coils or shunts, and ii) high-voltage sensors - involving Synaptec's hybrid optical transducer housed in a composite insulator.
WP3. M1-M18 (Syn, Strath, NPL, Bellrock). Algorithm, communication platform, and digital interface development.
Synaptec and Strathclyde will design and construct of a sensor interrogation system based on an OEM optical spectrometer, enabling sensor signal conditioning and interfacing with electricity substation equipment using the IEC61850-9-2 communication protocol, and enabling sensor read-out and distributed sensor technology demonstrations within this project. NPL will propose and optimise sampling strategies and compensation techniques. Bellrock, with input from Synaptec, will develop a novel automated diagnostics functionality with an integrated expert system which will enable detection of faults or any potential performance deterioration of the sensors and sensing network.
WP4. M12-M30 (Strath, NPL). Standardisation, metrology and qualification of sensor systems.
As part of this WP, the University will expand its calibration and test facilities to enable testing over an extended range of currents and voltages to enable full compliance testing against IEC standards for a number of selected applications. The extension of this experimental capability will be carried out with close involvement of NPL to specify and calibrate the system components and verify their correct operation to traceable standards. Sensors constructed in WP2 will then be calibrated and their compliance to the relevant IEC standards verified.
WP5. M12-36 (Strath). Long-term sensor reliability, lifetime, and testing campaigns.
The whole-lifetime reliability based on a statistical sample of transducers undergoing a range of environmental tests will be established in this work package to rigorously determine the life cycle capabilities of the technology.
WP6. M19-36 (Syn, PNDC). Live network installation and testing.
For the first time, this sensor technology will undergo live network testing both at distribution and transmission voltage levels. A prototype installation of six sensors will demonstrate new advanced applications facilitated by Synaptec's technology as proposed in WP7.
WP7. M12-M24 (Strath, Alstom). Identification & simulation of advanced network functions.
Strathclyde, with input from Alstom, will identify and demonstrate a range of power system monitoring, control and protection functions that can be enabled by the distributed sensor technology. Simulations using EMTP and Matlab Simulink software will be carried out to determine and quantify the performance and functionality of these novel schemes.

Planned Impact

The project stands to make a huge impact on the UK economy by taking to market a transformative technology via a new SME. Since this sensing technology is able to leverage the standard telecomunication-grade optical fibres that are installed on power networks, it could lead to the elimination of many costs conventionally associated with power network instrumentation, and simultaneously address the challenge of providing wide-area sensor coverage with minimal investment. This could lead to greater integration of our electrical and environmental sensing systems, and to extensive, wide-area, real-time knowledge of the state of electrical transmission and distribution systems.

This project will benefit every element of the energy "trilemma", and the academic or commercial strength of project partners, by fully developing a new technology with the potential to cost-effectively enhance the integration, coverage and performance of power system instrumentation:

Economic: The technology has unique potential to hugely reduce costs incurred by utilities in instrumenting transmission circuits, and to enable the required scale-up of instrumentation over the coming years at minimum cost. By developing partnerships between Synaptec and UK OEMs, the project will impact on the growth of the broader UK supply chain and enable the UK to export solutions to foreign markets experiencing similar problems. Strathclyde and NPL's involvement in taking this technology to market and in standards development will enhance their international reputations for carrying out leading industrially-relevant R&D.

Social: The key social impact will be increased security of energy supply to households and facilities such as hospitals and factories, by improving the robustness of electrical networks (including shorterning the duration and reach of outages). Importantly, the technology will enable this higher level of robustness without substantial expenditure that could lead to raising the consumer retail price of electrical power. The technology has also been identified by transmission operators SSE and National Grid as an enabler for the undergrounding of transmission circuits near areas of natural beauty that is ongoing across the EU.

Environmental: Enhancing our control and protection functionality, and hence the stability of the UK power network, will permit higher levels of renewable generation and energy storage devices to be connected. This will lead to a corresponding reduction in carbon emissions, and will contribute to a more sustainable and diversified future energy system that improves health, the environment, and our reliance on imported power.

Publications

10 25 50
 
Title Data for: "Optical voltage sensor for MV networks" 
Description The files in this dataset were created by testing novel optically-interrogated medium voltage (MV) voltage sensors against the requirements of IEC-61869-7 (replacing the old IEC-60044-7). The results were obtained by applying the standard accuracy type tests to the sensors. 
Type Of Art Image 
Year Produced 2018 
URL https://pure.strath.ac.uk/portal/en/datasets/data-for-optical-voltage-sensor-for-mv-networks(a59e58f...
 
Title HVDC Protection and Fault Location using Optical Sensors 
Description This data set contains 21 Matlab figure files, which were created to test protection and fault location schemes for HVDC grids, using optical sensors. The figures include: 1) Replica voltage waveforms (corresponding to scaled DC-side fault currents) which were physically input to the optical sensors, 2) Sensors response in terms of wavelength shift and 3) Voltage calculation according to sensors wavelength shift (inverted function was then used to calibrate wavelength shifts in terms of voltage). 
Type Of Art Image 
Year Produced 2018 
URL https://pure.strath.ac.uk/portal/en/datasets/hvdc-protection-and-fault-location-using-optical-sensor...
 
Description New sensor designs have been created.

A patent application concerning an innovative lightning protection scheme related to the photonic voltage sensor has been submitted - to be published in May 2021.
Exploitation Route Sensor designs are used by the industry. Synaptec has been commercialising this technology.
Sectors Aerospace, Defence and Marine,Education,Electronics,Energy,Transport

URL https://gtr.ukri.org/projects?ref=EP%2FP510300%2F1
 
Description Synaptec is commercialising the technology that was developed as part of this research programme. Synaptec's initial growth phase was focused on the development of core sensor technology, predominantly funded by Government grant funding and private investment. Synaptec has now entered a second phase of growth to establish commercial partnerships with relevant business partners and end-user customers. Revenues from commercial contracts now form a substantial proportion of funding dedicated to technology development and building other key company operations. Synaptec now employs 31 full-time personnel and has a turnover of around £1M.
First Year Of Impact 2023
Sector Education,Electronics,Energy
Impact Types Societal,Economic

 
Description Accelerating impact of the distributed photonic sensors technology on the electricity supply industry
Amount £34,126 (GBP)
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 04/2017 
End 03/2020
 
Description Impact Acceleration Account
Amount £38,192 (GBP)
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2018 
End 12/2018
 
Description Metrology for the next-generation digital substation instrumentation EURAMET
Amount £79,273 (GBP)
Funding ID 17IND06 FutureGrid II 
Organisation European Commission H2020 
Sector Public
Country Belgium
Start 06/2018 
End 05/2021
 
Description Yes to Energy Through Innovative Sensing (YETIS)
Amount £374,384 (GBP)
Funding ID 105638 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 12/2019 
End 11/2021
 
Title High Voltage Calibration Facility 
Description A new high voltage calibration facility has been established for conducting metrological research on photonic voltage transducers. 
Type Of Material Improvements to research infrastructure 
Year Produced 2019 
Provided To Others? No  
Impact The facility enables follow-on research in the area of distributed photonic voltage transducers. It is capable of calibration and qualification of voltage transducers up to 100 kV. 
 
Title Data for: "132 kV optical voltage sensor for wide area monitoring, protection and control applications" 
Description The files in this dataset were created by testing novel optically-interrogated high voltage (HV) voltage sensor against the requirements of IEC-61869-11 and IEC-61869-7 (replacing the old IEC-60044-7). The results were obtained by applying the standard accuracy type tests to the sensor. 
Type Of Material Database/Collection of data 
Year Produced 2020 
Provided To Others? Yes  
URL https://pureportal.strath.ac.uk/en/datasets/475d0933-180f-45dc-8d32-a136ab52ef07
 
Title Data for: "Photonic Voltage Transducer with Lightning Impulse Protection for Distributed Monitoring of MV Networks" 
Description The files in this dataset were created by testing novel optically-interrogated medium voltage (MV) voltage sensor against the requirements of IEC-61869-7 (replacing the old IEC-60044-7). The results were obtained by applying the standard accuracy type tests to the sensor. 
Type Of Material Database/Collection of data 
Year Produced 2020 
Provided To Others? Yes  
URL https://pureportal.strath.ac.uk/en/datasets/03b5240d-4392-4a87-9e51-7f9f33fd17cc
 
Title HVDC Protection and Fault Location using Optical Sensors 
Description HVDC Protection and Fault Location using Optical Sensors 
Type Of Material Database/Collection of data 
Year Produced 2018 
Provided To Others? No  
Impact Unknown 
 
Title Optical voltage sensor for MV networks 
Description The files in this dataset were created by testing novel optically-interrogated medium voltage (MV) voltage sensors against the requirements of IEC-61869-7 (replacing the old IEC-60044-7). The results were obtained by applying the standard accuracy type tests to the sensors. 
Type Of Material Database/Collection of data 
Year Produced 2018 
Provided To Others? Yes  
Impact Unknown 
 
Description Collaboration partnership on the Mid-Stage Innovate UK Energy Catalyst Bid 
Organisation Bellrock Ltd
Country United Kingdom 
Sector Private 
PI Contribution The consortium was established to jointly carry out a new R&D project, a follow up to the present project. Strathclyde's contribution is to offer know how in the core technology and to establish a unique testing facility for instrument transformers or sensors.
Collaborator Contribution NPL will bring in expertise in metrology, ITL in instrument transformers, Bellrock in cloud-based condition monitoring systems, and PNDC will offer expertise and facilities to test the new transducers.
Impact A successful Mid-Stage Innovate UK Energy Catalyst Award.
Start Year 2015
 
Description Collaboration partnership on the Mid-Stage Innovate UK Energy Catalyst Bid 
Organisation Instrument Transformers Ltd
Country United Kingdom 
Sector Private 
PI Contribution The consortium was established to jointly carry out a new R&D project, a follow up to the present project. Strathclyde's contribution is to offer know how in the core technology and to establish a unique testing facility for instrument transformers or sensors.
Collaborator Contribution NPL will bring in expertise in metrology, ITL in instrument transformers, Bellrock in cloud-based condition monitoring systems, and PNDC will offer expertise and facilities to test the new transducers.
Impact A successful Mid-Stage Innovate UK Energy Catalyst Award.
Start Year 2015
 
Description Collaboration partnership on the Mid-Stage Innovate UK Energy Catalyst Bid 
Organisation National Physical Laboratory
Country United Kingdom 
Sector Academic/University 
PI Contribution The consortium was established to jointly carry out a new R&D project, a follow up to the present project. Strathclyde's contribution is to offer know how in the core technology and to establish a unique testing facility for instrument transformers or sensors.
Collaborator Contribution NPL will bring in expertise in metrology, ITL in instrument transformers, Bellrock in cloud-based condition monitoring systems, and PNDC will offer expertise and facilities to test the new transducers.
Impact A successful Mid-Stage Innovate UK Energy Catalyst Award.
Start Year 2015
 
Description Collaboration partnership on the Mid-Stage Innovate UK Energy Catalyst Bid 
Organisation University of Strathclyde
Department Power Network Demonstration Centre
Country United Kingdom 
Sector Academic/University 
PI Contribution The consortium was established to jointly carry out a new R&D project, a follow up to the present project. Strathclyde's contribution is to offer know how in the core technology and to establish a unique testing facility for instrument transformers or sensors.
Collaborator Contribution NPL will bring in expertise in metrology, ITL in instrument transformers, Bellrock in cloud-based condition monitoring systems, and PNDC will offer expertise and facilities to test the new transducers.
Impact A successful Mid-Stage Innovate UK Energy Catalyst Award.
Start Year 2015
 
Description Mid stage I UK Partners 
Organisation Synaptec Ltd
Country United Kingdom 
Sector Private 
PI Contribution Research
Collaborator Contribution Application
Impact Sensor hardware and software
Start Year 2016
 
Company Name Synaptec Ltd 
Description Synaptec reduces electrical power transmission costs through reducing outages, preventing circuit damage, and minimizing civil works. Synaptec provides instrumentation that utilises existing optical fibres installed within power systems to enhance network protection and fault identification. 
Year Established 2014 
Impact Synaptec is a direct beneficiary of the current project. It is Synaptec's technology that was subject of R&D in the project.
Website http://synapt.ec/
 
Description Conference Tutorial at the International Instrumentation and Measurement Technology Conference (I2MTC 2020) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact The tutorial is meant at 'educating' professionals and postgraduate students who attend the IEEE I2MTC conference on the topic of the tutorial which was derived from the themes and outcomes covered by the award.
Year(s) Of Engagement Activity 2020
URL https://i2mtc2020.ieee-ims.org/tutorial-program
 
Description Confernece Tutorial at the Inernational Instrumentation and Measurmenet Technology Conference (I2MTC 2018) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact This tutorial will cover many of the findings from the project and will highlight the important applications within the are of power system measurement, control and protection. This will target audiences that are not normally exposed to photonics or power system metrology hence this is a highly effective means of reaching alternative audiences.
Year(s) Of Engagement Activity 2018
URL http://imtc.ieee-ims.org/pages/tutorials-program
 
Description IEEE I2MTC 2019 Tutorial 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact I was invited to give a talk about the topics covered by the project: "Distributed Photonic Sensing For Power and Energy Industries". The presentation was very well received, and I was invited again to give a similar tutorial at the IEEE I2MTC 2020.
Year(s) Of Engagement Activity 2019
URL https://i2mtc2019.ieee-ims.org/pages/tutorial-schedule