'EPSRC and SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies

Lead Research Organisation: University of Nottingham
Department Name: Sch of Pharmacy

Abstract

A drug is a molecule that acts upon biological processes in the body. In contrast, a medicine is a complex product that comprises the drug and other ingredients packaged into a final dosage form that can be administered to a patient to ensure there is a beneficial therapeutic effect with minimum side-effects. To achieve therapeutic effect it is essential to ensure that the drug is delivered to the appropriate site in the body, at the right time, and in the correct amount. This is challenging: some drug molecules are poorly soluble in biological milieu, while others are either not stable or have toxic side-effects and require careful processing into medicines to ensure they remain biologically active and safe. The new drug molecules arising from drug discovery and biotechnology have particularly challenging properties. Pharmaceutical technologies are central to developing medicines from these molecules, to ensure patients are provided with safe and efficacious therapy.

The design and development of new medicines is an inherently complex and cross-disciplinary process, and requires both innovative research and highly skilled, imaginative, researchers. To sustain and reinforce the UK's future global competitiveness, a new generation of highly-trained graduates educated at doctoral level is required to deliver transformative new therapeutics.

Our CDT will train an empowered network of at least 60 PhD students through a consortium of multiple industry partners led by the University of Nottingham and University College London. The involvement of partners from start-ups to major international pharmaceutical companies will ensure that our students receive the cross-disciplinary scientific knowledge needed to develop future medicines, and build the leadership, resilience and entrepreneurial skills crucial to allow them to function effectively as future leaders and agents of change. Through partnering with industry we will ensure that the research work undertaken in the CDT is of direct relevance to contemporary and future challenges in medicines development. This will allow the CDT research to make significant contributions to the development of new therapies, leading ultimately to transformative medicines to treat patients. Beyond the research undertaken in the CDT, our graduates will build careers across the pharmaceutical and healthcare sector, and will in the future impact society through developing new medicines to improve the health and well-being of individuals across the world.

We will train our students in four key science themes: (i) predictive pharmaceutical sciences; (ii) advanced product design; (iii) pharmaceutical process engineering; and, (iv) complex product characterisation. This will ensure our graduates are educated to approach challenges in preparing medicines from a range of therapeutic molecules, including emerging cutting-edge actives (e.g. CRISPR, or locked RNAs). These are currently at a critical stage of development, where research by scientists trained to doctoral level in the latest predictive and product design and development technologies is crucial to realise their clinical potential. Our students will obtain comprehensive training in all aspects of medicines design and development, including pharmaceutical engineering, which will ensure that they consider early the 'end game' of their research and understand how their work in the laboratory can be translated into products which can be manufactured and enter the clinic to treat patients.

Planned Impact

Pharmaceutical technologies underpin healthcare product development. Medicinal products are becoming increasingly complex, and while the next generation of research scientists in the life- and pharmaceutical sciences will require high competency in at least one scientific discipline, they will also need to be trained differently than the current generation. Future research leaders need to be equipped with the skills required to lead innovation and change, and to work in, and connect concepts across diverse scientific disciplines and environments. This CDT will train PhD scientists in cross-disciplinary areas central to the pharmaceutical, healthcare and life sciences sectors, whilst generating impactful research in these fields. The CDT outputs will benefit the pharmaceutical and healthcare sectors and will underpin EPSRC call priorities in the development of low molecular weight molecules and biologics into high value products.

Benefits of cohort research training: The CDT's most direct beneficiaries will be the graduates themselves. They will develop cross-disciplinary scientific knowledge and expertise, and receive comprehensive soft skills training. This will render them highly employable in R&D in the pharmaceutical, healthcare and wider life-sciences sectors, as is evidenced by the employment record in R&D intensive jobs of graduates from our predecessor CDTs. Our students will graduate into a supportive network of alumni, academic, and industrial scientists, aiding them to advance their professional careers.

Benefits to industry: The pharmaceutical sector is a key part of the UK economy, and for its future success and international competitiveness a skilled workforce is needed. In particular, it urgently needs scientists trained to develop medicines from emerging classes of advanced active molecules, which have formulation requirements that are very different from current drugs. The CDT will make a considerable impact by delivering a highly educated and skilled cohort of PhD graduates. Our industrial partners include big pharma, SMEs, CROs, CMOs, CMDOs and start-up incubators, ensuring that CDT training is informed by, and our students exposed to research drivers in, a wide cross-section of industry. Research projects in the CDT will be designed through a collaborative industry-academia innovation process, bringing direct benefits to the companies involved, and will help to accelerate adoption of new science and approaches in the medicines development. Benefit to industry will also be though potential generation of IP-protected inventions in e.g. formulation materials and/or excipients with specific functionalities, new classes of drug carriers/formulations or new in vitro disease models. Both universities have proven track records in IP generation and exploitation. Given the value added by the pharma industry to the UK economy ('development and manufacture of pharmaceuticals', contributes £15.7bn in GVA to the UK economy, and supports ~312,000 jobs), the economic impacts of high-level PhD training in this area are manifest.

Benefits to society: The CDT's research into the development of new medical products will, in the longer term, deliver potent new therapies for patients globally. In particular, the ability to translate new active molecules into medicines will realise their potential to transform patient treatments for a wide spectrum of diseases including those that are increasing in prevalence in our ageing population, such as cardiovascular (e.g. hypertension), oncology (e.g. blood cancers), and central nervous system (e.g. Alzheimer's) disorders. These new medicines will also have major economic benefits to the UK. The CDT will furthermore proactively undertake public engagement activities, and will also work with patient groups both to expose the public to our work and to foster excitement in those studying science at school and inspire the next generation of research scientists.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023054/1 01/10/2019 31/03/2028
2486124 Studentship EP/S023054/1 23/09/2019 21/12/2023 Laura McCoubrey
2327432 Studentship EP/S023054/1 23/09/2019 27/10/2023 Savvas Dimiou
2486135 Studentship EP/S023054/1 23/09/2019 22/12/2023 Nour All Ahham
2486127 Studentship EP/S023054/1 23/09/2019 21/09/2023 Ryan Trueman
2236204 Studentship EP/S023054/1 23/09/2019 01/10/2023 Omar Mokrane
2236317 Studentship EP/S023054/1 23/09/2019 26/04/2024 Samuel Ackerley
2283847 Studentship EP/S023054/1 01/10/2019 30/04/2021 Catherine Bastin
2283829 Studentship EP/S023054/1 01/10/2019 31/05/2022 Freddie Gough
2283818 Studentship EP/S023054/1 01/10/2019 31/05/2021 Henry Wallace
2283681 Studentship EP/S023054/1 01/10/2019 30/12/2023 Toby King
2428384 Studentship EP/S023054/1 28/09/2020 27/09/2024 Corinna Schlosser
2634877 Studentship EP/S023054/1 28/09/2020 27/09/2024 Diba Keyhanfar
2634872 Studentship EP/S023054/1 28/09/2020 27/09/2024 Colm O'Reilly
2425898 Studentship EP/S023054/1 28/09/2020 27/09/2024 Nidhi Seegobin
2634873 Studentship EP/S023054/1 28/09/2020 27/09/2024 Emily Atkinson
2425913 Studentship EP/S023054/1 28/09/2020 27/09/2024 Patricija Januskaite
2428392 Studentship EP/S023054/1 28/09/2020 27/09/2024 Alexandra Peremezhko
2436359 Studentship EP/S023054/1 01/10/2020 09/11/2024 Alfredo Smart
2436256 Studentship EP/S023054/1 01/10/2020 30/09/2024 Lewis O'Shaughnessy
2436162 Studentship EP/S023054/1 01/10/2020 30/06/2021 Rebecca Godbeer
2436239 Studentship EP/S023054/1 01/10/2020 30/09/2024 Isobel Jobson
2436372 Studentship EP/S023054/1 01/10/2020 30/09/2024 Branislav Vukovic
2436275 Studentship EP/S023054/1 01/10/2020 30/09/2024 Graziamarina Sinatra
2594361 Studentship EP/S023054/1 27/09/2021 26/09/2025 Anna Jorgensen
2594485 Studentship EP/S023054/1 27/09/2021 26/09/2025 Amy Locks
2636780 Studentship EP/S023054/1 27/09/2021 26/09/2025 Marissa Taub
2819847 Studentship EP/S023054/1 27/09/2021 26/09/2025 Victoria Chris
2594397 Studentship EP/S023054/1 27/09/2021 26/09/2025 Mazna Almatroudi
2606006 Studentship EP/S023054/1 01/10/2021 30/09/2025 Rafeullah Amiri
2606054 Studentship EP/S023054/1 01/10/2021 30/09/2025 Manuela Mitroi
2606442 Studentship EP/S023054/1 01/10/2021 30/09/2025 Consuelo Coser
2603670 Studentship EP/S023054/1 01/10/2021 30/09/2025 Merryn Hughes
2606056 Studentship EP/S023054/1 01/10/2021 30/09/2025 Daniel Vaughan
2606443 Studentship EP/S023054/1 01/10/2021 30/09/2025 Fady Mina
2742153 Studentship EP/S023054/1 26/09/2022 25/09/2026 Sara Jamshidi Parvar
2742233 Studentship EP/S023054/1 26/09/2022 25/09/2026 Iqra Hassan
2742218 Studentship EP/S023054/1 26/09/2022 25/09/2026 Ozde Oztekiner
2742228 Studentship EP/S023054/1 26/09/2022 25/09/2026 Antonia Gucic
2738552 Studentship EP/S023054/1 26/09/2022 25/09/2026 Tianyang Liu
2840156 Studentship EP/S023054/1 26/09/2022 25/09/2026 Iqra Hassan
2739158 Studentship EP/S023054/1 01/10/2022 30/09/2026 Stefana Duca
2739113 Studentship EP/S023054/1 01/10/2022 30/09/2026 Alexandra Howard
2739154 Studentship EP/S023054/1 01/10/2022 30/09/2026 Ruslan Mohamed
2763723 Studentship EP/S023054/1 01/10/2022 30/09/2026 Sham Nawshirawan
2739109 Studentship EP/S023054/1 01/10/2022 30/09/2026 Luke Kumeta
2739115 Studentship EP/S023054/1 01/10/2022 30/09/2026 Daniel Yanes
2882634 Studentship EP/S023054/1 01/10/2023 30/09/2027 Rachael Lever
2882636 Studentship EP/S023054/1 01/10/2023 30/09/2027 Ruby Brown
2882645 Studentship EP/S023054/1 02/10/2023 30/09/2027 Oliver Meeds
2882612 Studentship EP/S023054/1 02/10/2023 30/09/2027 Celina Worraker
2882644 Studentship EP/S023054/1 02/10/2023 30/09/2027 Silvia Smith
2882639 Studentship EP/S023054/1 02/10/2023 30/09/2027 Eve Gately
2888083 Studentship EP/S023054/1 02/10/2023 30/09/2027 Nga Cheng