RESETTING AND SCULPTING THE NOTCH RESPONSE
Lead Research Organisation:
University of Cambridge
Department Name: Physiology Development and Neuroscience
Abstract
Communication between cells, the building blocks of the body, is essential to build and maintain our tissues. Failures in this communication are the cause of many diseases, especially many types of cancers. One key way cells communicate is via the Notch receptor. When a signal is received by Notch, the instructions are interpreted differently depending on the previous history of the cell. For example, whether or not a cell will go on to multiply will be based on how its genome is set up to receive the signal. Under normal conditions there are checks and balances in the system to ensure that the cells respond correctly. However, in several types of cancers Notch signalling doesn't function properly. In many of these conditions, including T-cell acute lymphoblastic leukaemia and breast cancers, too much signal is produced causing the cells to multiply excessively, forming tumours. Surprisingly, in some other types of cancer the converse is the case. This makes it important to know how the cells will be interpreting the Notch signal in a particular tissue context. It also makes it more difficult to use drug treatments that simply shut off the Notch signal as they could have damaging effects in some tissues.
By answering two key questions we will acquire a better understanding of cell circumstances that will increase the probability that Notch activity will be oncogenic. This information will be valuable in working out the best strategies for patient treatments and to identify avenues that could be used to develop targeted drugs or drug combinations to avoid problems with current treatments. First we aim to discover what normally resets the way that cells interpret Notch signals, to ensure that they do not behave inappropriately by dividing unchecked and becoming cancer stem cells. Second, we will find out what architectural features of the genome help guide the signal so that the right types of product are made when the genes are turned on. To do this we will use both the fruit fly and human cells and will use strategies that enable us visualize in real time the way the genome is reset to help Notch to pick out which genes to turn on and to find the components in cells that facilitate this. We will also undertake large-scale analysis that allows us to detect global changes in the genome architecture in normal tissue and in tissues that grow too much because they have extra Notch activity. We use fruit flies because they have a simpler system that we can easily study in the living organism, making it more straightforward to decipher the information, yet they have over 75% of the human disease-causing genes. We then translate our discoveries from fruit-flies into the more complex human cancer cells to show their relevance for disease and to identify the best routes towards uses in the clinic.
By answering two key questions we will acquire a better understanding of cell circumstances that will increase the probability that Notch activity will be oncogenic. This information will be valuable in working out the best strategies for patient treatments and to identify avenues that could be used to develop targeted drugs or drug combinations to avoid problems with current treatments. First we aim to discover what normally resets the way that cells interpret Notch signals, to ensure that they do not behave inappropriately by dividing unchecked and becoming cancer stem cells. Second, we will find out what architectural features of the genome help guide the signal so that the right types of product are made when the genes are turned on. To do this we will use both the fruit fly and human cells and will use strategies that enable us visualize in real time the way the genome is reset to help Notch to pick out which genes to turn on and to find the components in cells that facilitate this. We will also undertake large-scale analysis that allows us to detect global changes in the genome architecture in normal tissue and in tissues that grow too much because they have extra Notch activity. We use fruit flies because they have a simpler system that we can easily study in the living organism, making it more straightforward to decipher the information, yet they have over 75% of the human disease-causing genes. We then translate our discoveries from fruit-flies into the more complex human cancer cells to show their relevance for disease and to identify the best routes towards uses in the clinic.
Technical Summary
The highly conserved Notch signalling pathway functions in diverse developmental and homeostatic processes. Likewise, disease implications from aberrant Notch programmes differ depending on the tissue: Notch activity promotes tumourigenesis in many contexts, including T-cell acute lymphoblastic leukaemia and breast cancers, whereas in others it is protective. Discovering how the appropriate responses to Notch are configured is therefore vital for deciphering when combinations of genetic abnormalities are likely to be oncogenic, and for informing strategies for targeted therapies. Our goal is to use a combination of live-imaging, genetic, biochemical and genomic approaches in Drosophila and in human cells to discover the fundamental mechanisms that reset and sculpt transcriptional responses to Notch. These mechanisms are essential to bring about different outcomes and to avoid inappropriate gene expression programmes being turned on. We have two major aims: (1) to discover what mechanisms ensure that enhancers are correctly remodelled during cell state transitions so that appropriate responses to Notch signals occur and emergence of cancerous cells is avoided; and (2) to learn how Notch-regulated enhancers select and communicate with promoters to produce RNA isoforms with the right regulatory features for the physiological context.
Our results will uncover general principles that explain how the diverse effects of Notch activation arise in tissue development They will also provide important insights for distinguishing the likelihood that disrupted Notch signalling will be oncogenic, by helping to decode contexts where other mutations will affect key components or regulatory mechanisms and will provide new paradigms to aid design of therapeutic strategies.
Our results will uncover general principles that explain how the diverse effects of Notch activation arise in tissue development They will also provide important insights for distinguishing the likelihood that disrupted Notch signalling will be oncogenic, by helping to decode contexts where other mutations will affect key components or regulatory mechanisms and will provide new paradigms to aid design of therapeutic strategies.
Planned Impact
Beneficiaries:
-Industry involved in pharmaceutical research and drug development.
-Medical profession involved in treating Notch related diseases including cancers
-Business, industrial and public sector recruiting graduate level staff.
-The general public and schools, through our involvement in public engagement.
Benefits to industry will come from the scientific results and the methodologies we develop:
Notch pathway is a major target for cancer and other therapeutics. Increased knowledge about the mechanisms can lead to novel approaches for targeting the pathway and can be important in informing about unforeseen side effects. For example, our results can inform whether patient mutations could be synergistic with Notch in a particular disease context and/or causing very different outcomes (e.g. tumour promoting versus tumour suppressing). They could also identify novel protein:protein interactions that would be a good substrate for drug developments.
Benefit is likely to be realized in the longer term and it would impact especially on enhancing quality of health.
Benefits to medicine will come from the scientific results and the insights into clinically relevant mechanisms:
A better understanding of how different targets are selected could be extremely valuable in diagnostic strategies because classical Notch targets (e.g., HES1) do not necessarily appear to be modulated in patient tissues. Results will also suggest new possibilities to improve on therapies targeting the Notch pathway. Currently, the main strategies use small molecule inhibitors of gamma-secretase and have serious side effects such as goblet cell metaplasia, as well as off target effects. The discovery of novel regulatory mechanisms in a subset of tissues could lead to strategies for developing more targeted therapies to overcome these problems. They can also be harnessed to manipulate Notch for directed differentiation of stem cells.
Benefits to business, industrial and public sector recruiting graduate level staff will come from the development of relevant research sills and professional skills:
The project's diverse nature ensures that the staff will acquire a broad range of technical skills (high-end imaging, genomic and molecular biology techniques, computational approaches for working with large data sets and modelling), which will be applicable in wide range of life sciences, pharmaceutical, computational employment. Further gains come from our international collaborations, enhancing the skills training and exposure. Alongside technical skills, staff will at the same time develop generic professional skills e.g. presentational skills; writing skills; data handling, including statistics; generic computational skills; project management. Evidence of our track record in this aspect comes from subsequent employment of staff from our groups (e.g. investment banking, parliamentary advisor, publishing, venture capital advisor).
Benefits to the general public and schools, through our involvement in public engagement:
We have been involved in communicating modern scientific ideas, methodologies and approaches to the wider community. These activities will be extended to encourage scientific understanding and to extend the concepts from our research into other fields. The University of Cambridge provides excellent support for public dissemination of research through the Office of Community Affairs, including the Cambridge Science Festival, and we will continue to encourage our researchers to participate in these activities.
-Industry involved in pharmaceutical research and drug development.
-Medical profession involved in treating Notch related diseases including cancers
-Business, industrial and public sector recruiting graduate level staff.
-The general public and schools, through our involvement in public engagement.
Benefits to industry will come from the scientific results and the methodologies we develop:
Notch pathway is a major target for cancer and other therapeutics. Increased knowledge about the mechanisms can lead to novel approaches for targeting the pathway and can be important in informing about unforeseen side effects. For example, our results can inform whether patient mutations could be synergistic with Notch in a particular disease context and/or causing very different outcomes (e.g. tumour promoting versus tumour suppressing). They could also identify novel protein:protein interactions that would be a good substrate for drug developments.
Benefit is likely to be realized in the longer term and it would impact especially on enhancing quality of health.
Benefits to medicine will come from the scientific results and the insights into clinically relevant mechanisms:
A better understanding of how different targets are selected could be extremely valuable in diagnostic strategies because classical Notch targets (e.g., HES1) do not necessarily appear to be modulated in patient tissues. Results will also suggest new possibilities to improve on therapies targeting the Notch pathway. Currently, the main strategies use small molecule inhibitors of gamma-secretase and have serious side effects such as goblet cell metaplasia, as well as off target effects. The discovery of novel regulatory mechanisms in a subset of tissues could lead to strategies for developing more targeted therapies to overcome these problems. They can also be harnessed to manipulate Notch for directed differentiation of stem cells.
Benefits to business, industrial and public sector recruiting graduate level staff will come from the development of relevant research sills and professional skills:
The project's diverse nature ensures that the staff will acquire a broad range of technical skills (high-end imaging, genomic and molecular biology techniques, computational approaches for working with large data sets and modelling), which will be applicable in wide range of life sciences, pharmaceutical, computational employment. Further gains come from our international collaborations, enhancing the skills training and exposure. Alongside technical skills, staff will at the same time develop generic professional skills e.g. presentational skills; writing skills; data handling, including statistics; generic computational skills; project management. Evidence of our track record in this aspect comes from subsequent employment of staff from our groups (e.g. investment banking, parliamentary advisor, publishing, venture capital advisor).
Benefits to the general public and schools, through our involvement in public engagement:
We have been involved in communicating modern scientific ideas, methodologies and approaches to the wider community. These activities will be extended to encourage scientific understanding and to extend the concepts from our research into other fields. The University of Cambridge provides excellent support for public dissemination of research through the Office of Community Affairs, including the Cambridge Science Festival, and we will continue to encourage our researchers to participate in these activities.
Organisations
People |
ORCID iD |
Sarah Bray (Principal Investigator) |
Publications
Townson JM
(2023)
OptIC-Notch reveals mechanism that regulates receptor interactions with CSL.
in Development (Cambridge, England)
Martins T
(2021)
The conserved C2 phospholipid-binding domain in Delta contributes to robust Notch signalling
in EMBO reports
Logeay R
(2022)
Mechanisms underlying the cooperation between loss of epithelial polarity and Notch signaling during neoplastic growth in Drosophila.
in Development (Cambridge, England)
Falo-Sanjuan J
(2022)
Notch-dependent and -independent transcription are modulated by tissue movements at gastrulation
in eLife
Description | Herchel Smith Post-Doctoral Fellowship |
Amount | £150,000 (GBP) |
Organisation | University of Cambridge |
Sector | Academic/University |
Country | United Kingdom |
Start | 08/2022 |
End | 09/2025 |
Description | International Exchanges 2023 Round 1 |
Amount | £5,000 (GBP) |
Funding ID | International Exchanges 2023 Round 1 - IESR1231193 |
Organisation | The Royal Society |
Sector | Charity/Non Profit |
Country | United Kingdom |
Start | 06/2023 |
End | 12/2023 |
Title | Live imaging of endogenous gene transcription |
Description | Endogenous Notch target genes have been tagged with MS2-loops to make possible live imaging of transcription in real time in vivo (E(spl)m7 and E(spl)m8) |
Type Of Material | Technology assay or reagent |
Year Produced | 2021 |
Provided To Others? | No |
Impact | New data sets generated that provide novel insights. Currently under analysis for future publication |
Title | OptICNocth |
Description | Method to produce active Notch using light. |
Type Of Material | Technology assay or reagent |
Year Produced | 2023 |
Provided To Others? | Yes |
Impact | Used to manipulate Notch activity in vivo and show memory of previous sugnal occurs, https://www.biorxiv.org/content/10.1101/2023.08.10.552629v2 |
Title | MS2 data from "Notch-dependent and -independent transcription are modulated by tissue movements at gastrulation" |
Description | MS2 data from "Levels of Notch-regulated transcription are modulated by tissue movements at gastrulation": - raw MS2 Live imaging movies: 123 '.lif' files captured in a Leica SP8 confocal. Each is a 1-2h movie of a developing fly embryo in the genetic condition described in the file name. The metadata file contains the information linking each movie with parameters used for image analysis and identifier of the genetic condition ("nickname" column). - data obtained from image analysis: 123 '.mat' files obtained from MATLAB after image analysis for each movie. README contains information of the data structure and all variables stored in each. - numerical data used for figures: text files containing data points used in all figures in the paper. "NumericalData.txt" contains the information about each plot, axes, figure where it's used and name of the file containing the numerical data. |
Type Of Material | Database/Collection of data |
Year Produced | 2022 |
Provided To Others? | Yes |
URL | https://figshare.com/articles/dataset/Data_from_Notch-dependent_and_-independent_transcription_are_m... |
Title | Other data from "Notch-dependent and -independent transcription are modulated by tissue movements at gastrulation" |
Description | Other live imaging data from "Levels of Notch-regulated transcription are modulated by tissue movements at gastrulation": - raw MS2 Live imaging movies: 58 '.lif' files captured in a Leica SP8 confocal. Each is a 1-2h movie of a developing fly embryo in the genetic condition described in the file name. The metadata file contains the information linking each movie with parameters used for image analysis and identifier of the genetic condition ("nickname" column). - data obtained from image analysis: 57 '.mat' files obtained from MATLAB after image analysis for each movie. README contains information of the data structure and all variables stored in each. |
Type Of Material | Database/Collection of data |
Year Produced | 2022 |
Provided To Others? | Yes |
URL | https://figshare.com/articles/dataset/Other_data_from_Notch-dependent_and_-independent_transcription... |
Description | CSL Dynamics |
Organisation | University of Cincinnati |
Country | United States |
Sector | Academic/University |
PI Contribution | Formulated the hypothesis and carrying out the in vivo experiments |
Collaborator Contribution | Providing structural advice and making biophysical measurements |
Impact | Is multidisciplinary, collaborator is a structural biologist. |
Start Year | 2014 |
Description | Locus Tag |
Organisation | Paul Sabatier University (University of Toulouse III) |
Country | France |
Sector | Academic/University |
PI Contribution | Developing locus-tag method for labelling unique gene loci in vivo |
Collaborator Contribution | Providing the basic strains and plasmids to enable the research |
Impact | Manuscripts currently under preparation will include methods paper |
Start Year | 2016 |
Description | Notch targets in cancer |
Organisation | Cancer Research UK Cambridge Institute |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Provided enabling data from our research, provided technical assistance and training |
Collaborator Contribution | comparisons with clinical array data |
Impact | helped train clinical fellow in molecular techniques likely to yield future publications contributed to proposal for G0800034 |
Start Year | 2007 |
Description | Notch targets in neuroblasts |
Organisation | Foundation for Research and Technology Hellas (FORTH) |
Department | Institute of Molecular Biology and Biotechnology (IMBB) |
Country | Greece |
Sector | Academic/University |
PI Contribution | Provided the expertise and resources for analysis of Notch targets in neuroblasts |
Collaborator Contribution | Provided samples for the study |
Impact | EMBO Short term fellowship for Evanthia Zacharioudaki Notch targets in neuroblasts, data will be cross-referenced and integrated with other data sets we have generated. Led to Dr Zacharioudaki joining the group as a post-doc and to two substantial publicatons. These acheievements underpinned her success in winning follow on funding with an intermediate fellowship in Greece. Zacharioudaki E, Housden BE, Garinis G, Stojnic R, Delidakis C, Bray SJ (2016) Genes implicated in stem-cell identity and temporal-program are directly targeted by Notch in neuroblast tumours. Development 143 (2), pp. 219-231 Zacharioudaki E, Housden BE, Garinis G, Stojnic R, Delidakis C, Bray SJ (2016) Genes implicated in stem-cell identity and temporal-program are directly targeted by Notch in neuroblast tumours. Development 143 (2): 219-231 |
Start Year | 2010 |
Description | Africans in STEM Symposium 2022 |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | Africans in STEM Symposium has the mission to build a network for African scientists. The symposium is an opportunity for African researchers in STEM fields across the UK to connect, share ideas, learn and form collaborations. The symposium welcomes STEM researchers at all levels of expertise - from undergraduates to principal investigators. |
Year(s) Of Engagement Activity | 2022 |
URL | https://www.africansinstem.co.uk/ |
Description | Science Improvisation |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | Local |
Primary Audience | Postgraduate students |
Results and Impact | A group of scientists ranging from PhD students to postdocs, interested in how improv can offer a fun and innovative way to communicate science. They perform shows at festivals and host monthly jam-sessions, and run improv workshops and social events across the university. |
Year(s) Of Engagement Activity | 2022 |
URL | http://cusi.soc.srcf.net/shows/ |