Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity

Lead Research Organisation: Loughborough University
Department Name: Geography and Environment

Abstract

Environmental change is happening on a global scale. Freshwater ecosystems represent some of the most endangered habitats in the world, with declines in diversity (83% in the period 1970-2014) far exceeding that of terrestrial counterparts. One of the primary causes of reduced riverine ecosystem health is a loss of habitat associated with excessive fine sediment deposition (typically referred to as particles <2mm). Fine sediment is a natural part of river systems, however alterations to land use (e.g. intensive farming) and channelization / impoundment (via dams and reservoirs) have altered the quantity of fine sediment such that inputs now far exceed historic levels. Additionally, increasing hydrological extremes associated with climatic change, such as intense rainfall events, are likely to further increase the delivery of fine sediment to river channels.

Fine sediment deposition alters and degrades instream habitats making rivers unsuitable for flora and fauna to live in. Such changes lead to reductions in the biodiversity of riverine ecosystems and affects all components of the food web from fish and insects through to algae. Understanding the ecological implications of fine sediment is therefore imperative to be able to manage our rivers so that they can support and sustain healthy ecosystem functioning and support anthropogenic activities (e.g., fisheries, recreational activities). This is however challenging because a number of environmental factors control the consequences of fine sediment for flora and fauna. The proposed Fellowship aims to understand and quantify which environmental factors (e.g. land use, size of fine sediment and of the gravels within the river, time of year) influence the severity of fine sediment deposition for river
communities.

Specific objectives are to (i) quantify the trends between fine sediment loading and ecological responses in the UK and internationally; (ii) determine if there is a threshold of fine sediment loading before ecological degradation occurs and how this varies within individual rivers, (iii) develop understanding of how environmental controls (e.g. grain size, hydrological exchange) structure the effects of fine sediment and; (iv) outline a future research agenda to tackle the management of fine sediment in rivers. In achieving these objectives, my Fellowship will provide a framework to determine when and which river types (e.g. highland or lowland, geology) are most at threat from fine sediment pressures internationally. The Fellowship will focus on macroinvertebrates (river invertebrates such as snails, insects and crustaceans) as a target organisms being abundant, diverse and occurring across the globe. The Fellowship represents a novel and exciting research programme with international reach and applicability that combines global datasets with multi-country field and artificial stream channel experiments (alpine and lowland) and laboratory experiments over different spatial scales to develop and validate theories spanning different environmental settings. The fellowship will lead to an exciting step-change in our understanding and will address unique fundamental research questions whilst working synergistically with UK statutory regulatory agencies and end-users such as the Environment Agency of England, Natural Resources Wales and Scottish Environmental Protection Agency. The research generated will have important ramifications for how stakeholders allocate resources to monitor and manage UK riverine ecosystems and will enable more efficient and targeted conservation and restoration plans.

Publications

10 25 50