Dynamics of Fundamental Cellular Processes by Live Cell and Tissue Imaging

Lead Research Organisation: University of Dundee
Department Name: School of Life Sciences

Abstract

The use of imaging in the biological and biomedical sciences has undergone a revolution in the last decade. One of the most important advances is the availability of quantitative imaging systems that can be used to measure the structure and dynamics of cells and tissues in the living state. In the last 5 years a number of new techniques have appeared that enable "super-resolution", where limits on the size of objects that can be seen, previously thought to form impassable barriers to scientific discovery, have been broken, enabling new opportunities for exploration and discovery.

At Dundee we run one of the UK's largest light microscopy facilities delivering 18 different systems and a number of different technologies to our own and many visiting biological scientists. This application requests support for 2 new imaging systems. The first is an upgrade of an existing platform-- the OMX microscope-- that achieves super-resolution using a technique called 'structured illumination microscopy'. We have run our OMX as a national resource and the system has been extremely popular - 50% usage is dedicated to external users, and we have hosted scientists from 19 different institutions from all over the UK and Europe. We want to extend OMX's super-resolution capabilities to look at live samples to further understand fundamental questions in cellular dynamics. We are also requesting funds for a second microscope, a light sheet florescence microscope ("LSFM") that is a new technology. LSFM is particularly attractive for long-term time laps and for examining the properties of cells in tissues. The LSFM we want to build also enables super resolution live cell imaging, using a special illumination technique called a Bessel beam, developed by physicists now based at Dundee who are participating in this project. With our established expertise in running advanced imaging systems and making them available to the wider community, we are sure these new systems will enable science across a broad range of applications, from the most basic studies of single-celled to the development of embryos and how cancer works as a disease.

Technical Summary

This application seeks support for a strategic upgrade of two advanced imaging capabilities in the College of Life Sciences Light Microscopy Facility (CLS-LMF) at the University of Dundee. Based on previous awards from SULSA, we have established 3D Structured Illumination Microscopy (3DSIM) on a commercial "OMX" platform as a production-grade resource for scientists located in Dundee and across Scotland and the UK. We have also built and a custom, new Light Sheet Fluorescence Microscope (LSFM), with a modified design that enables horizontally mounted specimens (e.g., higher vertebrate embryos, chick, etc.) to be imaged with unprecedented temporal and spatial resolution. Under the requested award, we will extend our 3DSIM capability to include living samples, and continue our commitment to deliver this super-resolution capability as a resource for all scientists in the UK. In addition, we aim to build a new LSFM based on Bessel beam illumination that will extend our analysis of fundamental process from the cellular to the subcellular level. As always, we will use the technologies within CLS-LMF in a wide variety of applications, but to enhance the impact, we have selected specific application domains-chromatin structure and dynamics in 3DSIM and cytoskeletal dynamics in BB-LSFM-- that will directly benefit from those technologies. Finally, we will drive the use of existing and newly developed image processing tools, linked in through our ongoing, separately funded work with the Open Microscopy Environment Consortium, to maximise our ability to analyse, understand, and publish the data generated from these resources.

Planned Impact

A number of communities will receive impact from the resources proposed here.

1. Scientists specialising in basic Cell, Developmental, Tissue Biology and any concerned with cell & tissue pathologies linked to changes in the properties and dynamics of cellular structures, e.g., cancer, neuro-degeneration, will benefit from the discoveries made on the proposed systems.

2. The staff directly employed on the project, and those scientists who use the systems will advance their careers, employability and unique skill sets by gaining expertise on cutting edge technology.

3. Dundee's scientists, including those in Divisions specifically targeting new diagnostic and therapeutic agents (e.g., Drug Discovery Unit and Molecular Medicine) who repeatedly make use of imaging tools to characterise the properties of pathogens and their drug candidates will benefit from access to advanced tools that deliver more detail and resolution of cell and tissue structures and dynamics.

4. A wide range of projects will directly benefit from access to live super-resolution imaging, through our existing, proven process of opening our cutting edge technology to external scientists.

5. Scientists using advanced image processing and analysis tools will benefit from access to the software tools we build and release under our established, world-recognised open source mechanisms.

Publications

10 25 50
 
Description Application for a TRI-SPIM fluorescence lightsheet microscope
Amount £593,081 (GBP)
Funding ID BB/R000441/1 
Organisation Biotechnology and Biological Sciences Research Council (BBSRC) 
Sector Public
Country United Kingdom
Start 08/2017 
End 08/2018
 
Title SIMcheck 
Description ImageJ plugin for assessing the quality and level of aberrations in 3D structured illumination microscopy data. 
Type Of Technology Webtool/Application 
Year Produced 2015 
Impact Published paper describing the software: http://www.ncbi.nlm.nih.gov/pubmed/26525406 
URL https://github.com/MicronOxford/SIMcheck