Biological controls on soil respiration and its climatic response across a large tropical elevation gradient
Lead Research Organisation:
University of Oxford
Department Name: Geography - SoGE
Abstract
This project will advance our ability to quantify the influence of climatic warming on the emission of CO2 from soil by investigating how soil biological and functional diversity (roots and microbes), and soil chemical properties, limit respiration processes in soil. This work will be the first of its kind to address this question over a large elevation gradient and in a tropical region where biodiversity and biogeochemical cycling of carbon are very high. The carbon balance of an ecosystem is strongly dependent on the balance between photosynthesis and respiration. Globally, respiration on land is at present very slightly smaller than photosynthesis, meaning that terrestrial ecosystems are thought to be a 'sink' for atmospheric carbon dioxide, slowing the continual rise in carbon dioxide (CO2) concentration in the atmosphere. The largest fraction of total respiration from land comes from the decomposition of organic matter in soil. This decomposition leads to emissions of CO2 to the atmosphere. The rate of decomposition may increase under climatic warming, possibly accelerating climate change over this century, so we need urgently to understand what the risk of this happening is. Our study site is in the tropical rain forests of Peru, ranging in altitude from 3000 m to 220 m above sea level. The soil carbon stock is large, particularly at high elevation and so represents a risk in the sense that this carbon could be broken down and emitted as CO2 under climatic warming. Our preliminary data suggest that there are large differences in the temperature sensitivity of soil CO2 emissions in these forests, with high sensitivity at high elevations. This project aims to understand these differences in sensitivity by examining controls over the decomposition of organic matter that are exerted by the physical environment and also by roots, and by the decomposing microbes in soil. Our study site is ideally suited to address this question because it spans a natural temperature gradient of 12-26 degrees Celsius. We will use this in two ways: (i) to observe natural differences in CO2 emissions at different elevations and temperatures and (ii) to examine the effects of transplanting soil from one elevation and 're-planting' it at another. We have performed part (ii) for 4 sites across our elevation gradient and now haave an exceptional opportunity to study the effects, and to advance our understanding of short- and long-term climatic warming of soil CO2 emissions. Our approach will be to observe the temperature response characteristics of soil CO2 emission in natural and transplanted soil. We will make high temporal resolution measurements over 2.5 years, further manipulating the soil to see the effects of removing roots and mycorrhizal fungi from the decomposing system. We will measure the physical environment and the chemical complexity of the soil carbon. We will also measure the biological diversity of microbes in the soil using leading edge membrane- and DNA-based techniques. Finally we will use a laboratory experiment to trace the types of carbon compound that different microbes use from different sites along the study transect. Here we will 'feed' the soil with a stable (safe) carbon isotope and trace where that carbon is used and emitted - ie how much labeled CO2 is emitted and which organisms use it in their metabolism. This will give us valuable information to inform our analysis of the data we get from field measurements. In our analysis we will statistically examine what microbes/root functions are most important for constraining the response by soil respiration to climatic change and use our laboratory data to provide mechanistic interpretations of our statistical analysis. Combined we will develop a new understanding of the response by soil respiration to climatic warming and we will test how important biological diversity is for controlling and constraining that response, and its effect on climatic change.
Organisations
Publications
Dahlsjö C
(2014)
Describing termite assemblage structure in a Peruvian lowland tropical rain forest: a comparison of two alternative methods
in Insectes Sociaux
Dahlsjö C
(2014)
Termites promote soil carbon and nitrogen depletion: Results from an in situ macrofauna exclusion experiment, Peru
in Soil Biology and Biochemistry
Dahlsjö C
(2014)
First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences
in Journal of Tropical Ecology
Dahlsjö C
(2015)
Density-body mass relationships: Inconsistent intercontinental patterns among termite feeding-groups
in Acta Oecologica
Description | Through the work of attached PhD student Cecilia Dahsjoe, we have shown that termites have very different influences on ecosystem function (litter recycling rates) in different continents, because of the nature of termite biogeographical history. |
Exploitation Route | This work could be expanded with more detailed fieldwork in other regions. |
Sectors | Environment |