Climate Change Predictions with a Fully Resolved Stratosphere

Lead Research Organisation: UNIVERSITY OF READING
Department Name: Meteorology

Abstract

Climate model simulations for the next assessment of the Intergovernmental Panel on Climate Change (IPCC) are currently being prepared by climate modelling centres around the world. In this joint project with the Met Office, fully coupled atmosphere-ocean model simulations will be performed and analysed using a 'high-top' version of the Met Office Hadley Centre climate model that extends to 85km and therefore fully resolves processes in the stratosphere. Simulations of the past (1860-present) and into the future (to 2100) will be carried out. The project will examine the climate change signals predicted by the fully coupled ocean-troposphere-stratosphere model and investigate the stratospheric influence on surface climate. These aims will be achieved by careful analysis of the model runs, together with additional experiments to isolate processes, test mechanisms and improve statistical significance. Particular emphasis will be placed on (a) regional and seasonal patterns of surface change, especially the North Atlantic Oscillation and impacts over Europe, and (b) detection and attribution studies, exploiting the well-known tropospheric warming / stratospheric cooling signature of anthropogenic influence. Comparisons will be carried out with observations, with corresponding low-top model runs that do not fully resolve the stratosphere and with runs from high-top models carried out by other international climate modelling groups.

Publications

10 25 50

Related Projects

Project Reference Relationship Related To Start End Award Value
NE/H024409/1 16/03/2011 30/07/2013 £19,968
NE/H024409/2 Transfer NE/H024409/1 31/07/2013 30/03/2014 £4,462
 
Description Simulations of long-term climate have been carried out with two types of model - one with a fully-resolved stratosphere and one in which only the lower stratosphere was included. The project has found a number of differences in the simulations that can be attributed to the representation of the stratosphere and how it impacts our surface climate. The study has also examined the influences of mechanisms that primarily involve the stratosphere, such as the influence of the 11-year solar cycle.
Exploitation Route The work has highlighted the importance of including a well-resolved stratosphere and the Met Office now routinely include the stratosphere in their climate simulations and have increasingly included it in seasonal forecasts. There is much potential to improve the representation of solar variability in the model and the Met Office has recognised that there is potential to improve seasonal forecasts by doing so.
Sectors Environment